Condensed Matter Physics: Long-standing prediction of quantum physics experimentally proven

In the ground state the magnetic moments are either upward or downward, the spins antiparallel to the external magnetic field (red) are never together (right). By excitation, further spins can align antiparallel and Bethe chains are formed (white spins, left).

In the ground state the magnetic moments are either upward or downward, the spins antiparallel to the external magnetic field (red) are never together (right). By excitation, further spins can align antiparallel and Bethe chains are formed (white spins, left). © HZB

90 years ago, the physicist Hans Bethe postulated that unusual patterns, so-called Bethe strings, appear in certain magnetic solids. Now an international team has succeeded in experimentally detecting such Bethe strings for the first time. They used neutron scattering experiments at various neutron facilities including the unique high-field magnet of BER II* at HZB. The experimental data are in excellent agreement with the theoretical prediction of Bethe and prove once again the power of quantum physics.

The regular arrangement of atoms in a crystal allows complex interactions that can lead to new states of matter. Some crystals have magnetic interactions in only one dimension, i.e. are they magnetically one-dimensional. If, in addition, successive magnetic moments are pointing in opposite directions , then we are dealing with a one-dimensional antiferromagnet. Hans Bethe first described this system theoretically in 1931, predicting also the presence of excitations of strings of two or more consecutive moments pointing in one direction, so called Bethe strings. 

1D-model system to obserbe Bethe strings

However those string states could not be observed under normal experimental conditions because they are unstable and obscured by the other features of the system. The trick used in this paper is to isolate the strings by applying a magnetic field.

Now an international cooperation around the HZB physicist Bella Lake and her colleague Anup Bera was able to experimentally identify and characterise Bethe strings in a real solid for the first time. The team made crystals of SrCo2V2O8, which is a model system one-dimensional antiferromagnnet. Only the cobalt atoms have magnetic moments, they all are aligned along one direction and adjacent moments cancel each other out.

At BER II: External magnetic fields up to 25,9 Tesla

At the Berlin neutron source BER II it was possible to investigate the sample with neutrons under extremely high magnetic fields up to 25.9 Tesla. From the data, the physicists obtained a phase diagram of the sample as a function of the magnetic field, and also further information about the internal magnetic patterns, which could be compared with the idea of Bethe that were quantified by a theoretical group led by Jianda Wu.

Excellent agreement with theory

"The experimental data are in excellent agreement with the theory," says Prof. Bella Lake. "We were able to clearly identify two and even three chains of Bethe strings and determine their energy dependence. These results show us once again how fantastically well quantum physics works."

Nature Physics (2020): Dispersions of Many-Body Bethe Strings Anup Kumar Bera, Jianda Wu, Wang Yang, Robert Bewley, Martin Boehm, Jianhui Xu, Maciej Bartkowiak, Oleksandr Prokhnenko, Bastian Klemke, A. T. M. Nazmul Islam, Joseph Mathew Law, Zhe Wang and Bella Lake

DOI: 10.1038/s41567-020-0835-7

* After 46 years of successful research with neutrons, the operation of the Berlin research reactor BER II ended on 11 December 2019.  The BER II is to be dismantled over the next few years.

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.