World Record: Efficiency of perovskite silicon tandem solar cell jumps to 29.15 per cent

The tandem solar cell was realized on a typical laboratory scale of one square centimeter. However, scaling up is possible.

The tandem solar cell was realized on a typical laboratory scale of one square centimeter. However, scaling up is possible. © Eike Köhnen/HZB

The illustration shows the structure of the tandem solar cell: between the thin perovskite layer (black) and the silicon layer (blue) are functional intermediate layers.

The illustration shows the structure of the tandem solar cell: between the thin perovskite layer (black) and the silicon layer (blue) are functional intermediate layers. © Eike Köhnen/HZB

How does a perovskite silicon cell work?

02:15

In the race for ever higher efficiency levels, an HZB development team has once again pulled ahead. The groups of Steve Albrecht and Bernd Stannowski have developed a tandem solar cell made of the semiconductors perovskite and silicon, that converts 29.15 per cent of the incident light into electrical energy. This value has been officially certified by the CalLab of the Fraunhofer Institute for Solar Energy Systems (ISE) and means that surpassing the 30 per cent efficiency mark is now within reach.

While silicon converts mostly the red portions of sunlight into electricity, perovskite compounds primarily utilise the blue portions of the spectrum. A tandem solar cell made of stacked silicon and perovskite thus achieves significantly higher efficiency than each individual cell on its own.

Prof. Bernd Stannowski from the HZB Institute PVcomB and Prof. Steve Albrecht, who heads a team funded by the German Federal Ministry of Education and Research (BMBF) at HZB, have already jointly set new records for monolithic tandem solar cells on several occasions. At the end of 2018, the team presented a tandem solar cell made of silicon with a metal-halide perovskite that achieved an efficiency of 25.5 per cent. Then Oxford Photovoltaics Ltd. announced a value of 28 per cent.

World record certified

Now the HZB team can report the next record. The value of 29.15 per cent has been certified by the Fraunhofer Institute for Solar Energy Systems (ISE) and now appears in the charts of the National Renewable Energy Lab (NREL), USA. The NREL chart has been tracking the rising efficiency levels for nearly all types of solar cell since 1976. Perovskite compounds have only been included since 2013 – and the efficiency of this class of material has increased more than in any other material since then.

“We developed a special electrode contact layer for this cell in collaboration with the group of Prof. Vytautas Getautis (Kaunas University of Technology), and also improved intermediate layers“, explain Eike Köhnen and Amran Al-Ashouri, doctoral students in Albrecht's group. The new electrode contact layer also permitted improvement of the perovskite compound‘s composition in the HZB HySPRINT laboratory. This compound is now more stable when illuminated in the tandem solar cell and improves the balance of electrical currents contributed by the top and bottom cells. The silicon bottom cell comes from Stannowski's group and features a special silicon-oxide top layer for optically coupling the top and bottom cells.

Upscaling is feasible

All processes used to realise this one-square-centimeter cell are also suitable in principle for large surface areas. Scaling up with the help of vacuum deposition processes is very promising, as initial tests have already shown.

The realistic practical efficiency limit for tandem cells made of silicon and perovskite is about 35 per cent. Next, the HZB team wants to break the 30 per cent efficiency barrier. Albrecht explains that initial ideas for this are already under discussion.

More Information:

Steve Albrecht heads the junior research group Perovskite Tandem Solar Cells and is a junior professor at the TU Berlin. He is researching the organic-inorganic material perovskite, which is one of the biggest surprises in solar cell research: In just six years, the efficiency of perovskite solar cells has quintupled. In addition, perovskite layers can be produced from solution and in future can be printed cost-effectively on large areas.

Albrecht's team, in cooperation with other groups from HZB, has already set several world records for tandem solar cells made of perovskite in combination with inorganic semiconductors. In September 2019, they presented a tandem solar cell made of CIGS and perovskite that achieves a certified efficiency of 23.26 percent, which is still the current world record for this material combination. They also developed an industry relevant perovskit/PERC solar cell in 2019 with a PV industry partner.

arö

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.