HZB Researcher on the Board of Directors of the Materials Research Society

Catherine Dubourdieu is head of the IFOX Institute at HZB and was elected now into the board of directors of the MRS.

Catherine Dubourdieu is head of the IFOX Institute at HZB and was elected now into the board of directors of the MRS.

In September 2019, Prof. Dr. Catherine Dubourdieu was elected into the Board of Directors of the Materials Research Society (MRS). The MRS is one of the largest scientific associations and has almost 14000 members from various areas of the natural sciences and engineering.

Catherine Dubourdieu heads the HZB-Institute IFOX (Functional Oxides for Energy Efficient Information Technology) and holds a professorship at the Freie Universität Berlin. She investigates the growth and properties of functional oxides and semiconductor materials with the aim of developing energy-efficient devices for information technology, that can be integrated on silicon chips. Over the past 15 years, the physicist has also established numerous collaborations with industry and holds 10 patents. She has already published over 140 articles in peer-review journals and has an excellent international network.

In the Materials Research Society Catherine Dubourdieu has been active for over 20 years, also in responsible functions. As of 2020, Catherine Dubourdieu will be a member of the MRS Board of Directors to support the global materials research community and provide a framework for the various disciplines to collaborate.

The MRS's mission is to advance international interdisciplinary materials research and technology for the benefit of the human society. It was founded in 1973 and today has around 14000 members from various areas of the natural sciences and engineering. The governance of the Society is the responsibility of the Board of Directors, composed of 6 officers and 18 directors, 15 of whom are elected by the membership. One third of the Board is renewed each year. Catherine Dubourdieu will serve in this position over the next three years.

arö

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.