World record for tandem perovskite-CIGS solar cell

The Pero-CIGS tandem cell achieves a record efficiency of 23.26 percent.

The Pero-CIGS tandem cell achieves a record efficiency of 23.26 percent. © HZB

The electron microscopy image shows an AZO layer (reddish colored) between the perovskite and the CIGS semiconductor. On top of AZO is the self assembled monomolecular layer (SAM).

The electron microscopy image shows an AZO layer (reddish colored) between the perovskite and the CIGS semiconductor. On top of AZO is the self assembled monomolecular layer (SAM). © HZB

Most of the work was done in the Helmholtz Innovation Lab HySPRINT at HZB.

Most of the work was done in the Helmholtz Innovation Lab HySPRINT at HZB. © Swantje Furtak

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical semiconductor materials such as silicon and copper-indium-gallium-selenide (CIGS) compounds in tandem solar cells promises low-cost, high-performance solar modules for the future. However, losses at the electrodes between the two semiconductors considerably reduce the efficiency.

Record efficiency: 23,26 per cent

HZB physicist Prof. Steve Albrecht and his team now successfully established novel electrode coatings that greatly reduce these losses. They could produce a monolithic tandem solar cell from perovskite and CIGS that achieved an officially certified  efficiency of 23.26 per cent, which currently is a world record value.  The tandem cell has an active area of one square centimetre and thus reaches another milestone, as perovskite CIGS tandem cells have so far been significantly smaller.

Self assembled monolayer

The contact layers consist of carbazole-based organic molecules coupled to phosphonic acid groups. These molecules arrange themselves into what are known as self-assembled monolayers (SAMs). These SAMs have highly favourable electro-optical properties and the self-assembly even leads to complete coverage of rough semiconductor surfaces.

Two patents filed

“The SAMs are strikingly simple and robust. This also allows them to be scaled up to industrial levels. In addition, they are compatible to a wide variety of substrates and their material consumption is extremely low”, explains Amran Al-Ashouri, PhD student in the Albrecht group and first author of the study. This work might further accelerate progress towards extremely inexpensive perovskite-based PV technologies. The group has now filed two patents and is currently in licensing negotiations.

Prof. Steve Albrecht heads the Perovskite Tandem Solar Cells Junior Research Group funded by the German Federal Ministry of Education and Research (BMBF). Work on the perovskite solar cells took place primarily in the Helmholtz HySPRINT Innovation Lab, while the SAMs were developed in close collaboration with Kaunas University of Technology (Lithuania), where the group of Prof. Vytautas Getautis synthesized the molecules. The CIGS layers are provided by the group of Dr. Christian Kaufmann, who heads the high efficiency CIGS activities at HZB and is supported by the SpeedCIGS project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

Presentation on Wednesday, at EU PVSEC

Albrecht will present this work next Wednesday, September 11th, in Marseille at a plenary lecture of EU PVSEC, the world’s largest international photovoltaic and solar energy conference and exhibition.

Title of the talk: “Towards Highly Efficient Monolithic Tandem Devices with Perovskite Top Cells” S. Albrecht, A. Al-Ashouri, E. Köhnen, M. Jost, A. Morales, T. Bertram, L. Korte, B. Stannowski, C. Kaufmann, R. Schlatmann

Location: EU PVSEC, Marseille, France 9-13 September 2019

Date: Wednesday, September 11, 2019 PLENARY SESSION 3CP.1 from 10:30 - 12:00 Perovskite, Organic, CIGS and III-V Multi-Junction Devices

 

arö

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.