Archaeology at BESSY II: “Invisible ink” on antique Nile papyrus revealed

A team of researchers examined an ancient papyrus with a supposed empty spot. With the help of several methods, they discovered which signs once stood in this place and which ink was used.

A team of researchers examined an ancient papyrus with a supposed empty spot. With the help of several methods, they discovered which signs once stood in this place and which ink was used. © HZB

Researchers from the Egyptian Museum and Papyrus Collection, Berlin universities and Helmholtz-Zentrum Berlin studied a small piece of papyrus that was excavated on the island of Elephantine on the River Nile a little over 100 years ago. The team used serval methods including non-destructive techniques at BESSY II. The researchers’ work, reported in the Journal of Cultural Heritage, blazes a trail for further analyses of the papyrus collection in Berlin.

The first thing that catches an archaeologist’s eye on the small piece of papyrus from Elephantine Island on the Nile is the apparently blank patch. Researchers from the Egyptian Museum, Berlin universities and Helmholtz-Zentrum Berlin have now used the synchrotron radiation from BESSY II to unveil its secret. This pushes the door wide open for analysing the giant Berlin papyrus collection and many more.

For more than a century, numerous metal crates and cardboard boxes have sat in storage at the Egyptian Museum and Papyrus Collection Berlin, all of which were excavated by Otto Rubensohn from 1906 to 1908 from an island called Elephantine on the River Nile in the south of Egypt, near the city of Aswan. Eighty percent of the texts on the papyrus in these containers have yet to be studied, and this can hardly be done using conventional methods anymore. Thousands of years ago, the Egyptians would carefully roll up or fold together letters, contracts and amulets to a tiny size so that they would take up the least possible space. In order to read them, the papyri would have to be just as carefully unfolded again. “Today, however, much of this papyrus has aged considerably, so the valuable texts can easily crumble if we try to unfold or unroll them,” Prof. Dr. Heinz-Eberhard Mahnke of Helmholtz-Zentrum Berlin and Freie Universität Berlin describes the greatest obstacle facing the Egyptologists, who are eager to unearth the scientific treasures waiting in the boxes and crates in the Berlin Egyptian Museum.

Testing the fragile papyrus with nondestructive methods

The physicist at Helmholtz-Zentrum Berlin knew from many years of research how to analyse the fragile papyrus without destroying it: shining a beam of X-ray light on the specimen causes the atoms in the papyrus to become excited and send back X-rays of their own, much like an echo. Because the respective elements exhibit different X-ray fluorescence behaviour, the researchers can distinguish the atoms in the sample by the energy of the radiation they return. The scientists therefore long ago developed laboratory equipment that uses this X-ray fluorescence to analyse sensitive specimens without destroying them.

 

Scholars in ancient Egypt typically wrote with a black soot ink made from charred pieces of wood or bone and which consisted mainly of elemental carbon. “For certain purposes, however, the ancient Egyptians also used coloured inks containing elements such as iron, copper, mercury or lead,” Heinz-Eberhard Mahnke explains. If the ancient Egyptian scribes had used such a “metal ink” to inscribe the part that now appears blank on the Elephantine papyrus, then X-ray fluorescence should be able to reveal traces of those metals. Indeed, using the equipment in their laboratory, the researchers were able to detect lead in the blank patch of papyrus.

Revealing sharper details at BESSY II with “absorption edge radiography”

In fact, they even managed to discern characters, albeit as a blurry image. To capture a much sharper image, they studied it with X-ray radiography at BESSY II, where the synchrotron radiation illuminates the specimen with many X-ray photons of high coherence. Using “absorption edge radiography” at the BAMline station of BESSY II, they were able to increase the brightness of this technique for the sample studied, and thus better distinguish the characters written on the papyrus from the structure of the ancient paper. So far, it has not been possible to translate the character, but it could conceivably depict a deity.

Composition of the invisible ink resolved in the Rathgen laboratory

The analysis at BESSY II did not identify the kind of leaded ink the ancient scribes used to write these characters on the papyrus. Only by using a “Fourier-transform infrared spectrometer” could the scientists of the Rathgen Research Laboratory Berlin finally identify the substance as lead carboxylate, which is in fact colourless. But why would the ancient scribe have wanted to write on the papyrus with this kind of “invisible ink”? “We suspect the characters may originally have been written in bright minium (red lead) or perhaps coal-black galena (lead glance),” says Heinz-Eberhard Mahnke, summarising the researchers’ deliberations.

If such inks are exposed to sunlight for too long, the energy of the light can trigger chemical reactions that alter the colours. Even many modern dyes similarly fade over time in the bright sunlight. It is therefore easily conceivable that, over thousands of years, the bright red minium or jet black galena would transform into the invisible lead carboxylate, only to mystify researchers as a conspicuously blank space on the papyrus fragment.

Method developed to study folded papyri without contact

With their investigation, Dr. Tobias Arlt of Technische Universität Berlin, Prof. Dr. Heinz-Eberhard Mahnke and their colleagues have pushed the door wide open for future studies to decipher texts even on finely folded or rolled papyri from the Egyptian Museum without having to unfold them and risk destroying the precious finds. The researchers namely developed a new technique for virtually opening the valuable papyri on the computer without ever touching them.

The Elephantine project funded by the European Research Council, ERC, and headed by Prof. Dr. Verena Lepper (Stiftung Preußischer Kulturbesitz-Staatliche Museen zu Berlin) is thus well on its way to studying many more of the hidden treasures in the collection of papyrus in Berlin and other parts of the world, and thus to learning more about Ancient Egypt.

Published in the Journal of Cultural Heritage (2019): “Absorption Edge Sensitive Radiography and Tomography of Egyptian Papyri”. T. Arlt, H.-E. Mahnke T. Siopi, E. Menei, C. Aibéo, R.-R. Pausewein, I. Reiche, I. Manke, V. Lepper ( https://doi.org/10.1016/j.culher.2019.04.007)

and

“Virtual unfolding of folded papyri”; H.-E. Mahnke, T. Arlt, D. Baum, H.-C. Hege, F. Herter, N. Lindow, I. Manke, T. Siopi, E. Menei, M. Etienne, V. Lepper (https://doi.org/10.1016/j.culher.2019.07.007)

 

(Roland Knauer)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.