High-efficiency thermoelectric materials: new insights into tin selenide

SnSe is a highly layered orthorhombic structure. SnSe undergoes a phase transition of second order at 500°C with an increase of the crystal symmetry from space group Pnma (left) to Cmcm (right).

SnSe is a highly layered orthorhombic structure. SnSe undergoes a phase transition of second order at 500°C with an increase of the crystal symmetry from space group Pnma (left) to Cmcm (right). © HZB

Tin selenide might considerably exceed the efficiency of current record holding thermoelectric materials made of bismuth telluride. However, it was thought its efficiency became enormous only at temperatures above 500 degrees Celsius. Now measurements at the BESSY II and PETRA III synchrotron sources show that tin selenide can also be utilised as a thermoelectric material at room temperature – so long as high pressure is applied.

The thermoelectric effect has been known since 1821: with certain combinations of materials, a temperature difference generates an electric current. If one end of the sample is heated, for example using waste heat from a combustion engine, then part of this otherwise lost energy can be converted into electrical energy. However, the thermoelectric effect in most materials is extremely small. This is because to achieve a large thermoelectric effect, heat conduction must be poor, whereas electrical conductivity must be high. However, heat conduction and electrical conductivity are almost always closely associated.

For this reason, the search for thermoelectric materials concentrates on compounds with special crystalline structures such as bismuth telluride (Bi2Te3). Bismuth telluride is one of the best thermoelectric materials known to date. However, both bismuth and tellurium are rare elements, which limit their large-scale use. So the search continues for suitable thermoelectric materials among more abundant non-toxic elements.

Six years ago, a research team from the USA (https://www.nature.com/articles/nature13184) discovered that tin selenide above 500 degrees Celsius can convert about 20 per cent of heat into electrical energy. This is an enormous efficiency and considerably exceeds the value for bismuth telluride. In addition, tin and selenium are abundant.

This extremely large thermoelectric effect is related to a phase transition or re-arrangement of the crystal structure of tin selenide. The crystal structure of tin selenide consists of many layers, similar to filo or puff pastry. At 500 degrees Celsius, the layers start to self-organise and the heat conduction decreases, while charge carriers remain mobile. The efficiency of the thermoelectric effect in this crystallographic orientation of tin selenide has not been exceeded by any other material to date.

High pressure works

An international team led by Dr. Ulrich Schade at the HZB has now comprehensively examined samples of tin selenide with the aid of infrared spectroscopy at BESSY II and hard X-rays at PETRA III. The measurements show that the desired crystal structure is produced by either high temperature at normal pressure or high pressure (above 10 GPa) at room temperature. The electronic properties also change from semiconducting to semi-metallic in the high-temperature structure. This fits the predictions from theoretical calculations of the model and also from band-structure calculations.

“We are able to explain with our data and our calculations why tin selenide is such an outstanding thermoelectric material over a wide temperature and pressure range”, says Schade. Further development work will be necessary to guarantee long-term stability, for example, before thermoelectrical devices based on tin selenide really come onto the market, though. Then tin selenide might become an economical and readily available alternative to bismuth telluride.

Published in Physical Chemistry Chemical Physics (2019):

“Effects of temperature and pressure on the optical and vibrational properties of thermoelectric SnSe.” Ilias Efthimiopoulos, Matthias Berg, Annika Bande, Ljiljana Puskar, Eglof Ritter, Wei Xu, Augusto Marcelli, Michele Ortolani, Martin Harms, Jan Mueller, Sergio Speziale, Monika Koch-Mueller, Yong Liu, Li-Dong Zhao, and Ulrich Schade.                                                         

DOI: 10.1039/C9CP00897G

 

arö

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.