Two new Helmholtz Young Investigator Groups will start in 2019

Starting in 2019, Helmholtz-Zentrum Berlin (HZB) will be establishing two new Helmholtz Young Investigator Groups and thereby strengthening its competencies in catalysis research. The Helmholtz Association will be funding each group with 150,000 euros annually over a period of five years, and HZB will be matching that sum with its own funds.

The group of Dr. Christopher Seiji Kley will be developing light-absorbing materials and catalysts for the sunlight-driven conversion of carbon dioxide and water into fuels. The Young Investigator Group will be introducing concepts inspired from biology as a way to increase the catalysts’ energy efficiency and to maximise the catalytic activity for longer-chain hydrocarbons. The planned start for the group is in March 2019.

Dr. Olga Kasian’s group will be researching what are the factors currently limiting the performance of catalysts in solar hydrogen production. To do so, they will be analysing the catalysts’ uppermost atomic layers and explaining the reaction mechanisms by directly detecting the intermediates and products. BESSY II offers the latest spectroscopic methods for studying the electronic changes in the materials in-operando. Olga Kasian’s Young Investigator Group will kick off in May 2019.

Two out of ten new Helmholtz Young Investigator Groups at HZB

In the recent selection process for heads of Young Investigator Groups, an interdisciplinary jury selected ten talents from a total of 23 applicants. HZB came out very successfully in the selection round: out of ten newly funded Helmholtz Young Investigator Groups, two are to be established at HZB in 2019.

About the “Helmholtz Young Investigators” programme

The research programme fosters highly qualified young researchers who completed their doctorate three to six years ago. The heads of the Young Investigator Groups receive support through a tailored training and mentoring programme and are assured long-term prospects at HZB. One aim of the programme is to strengthen the networking of Helmholtz centres and universities. The costs – 300,000 euros per year per group over five years – are covered half by the Helmholtz President’s Initiative and Networking Fund, and half by the Helmholtz centres.

(sz)

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.