Poster award for HZB PhD student

John Uhlrich, Editor-in-Chief at Wiley VCH presented an award to Quentin Jeangros, EPFL, and Eike Köhnen, HZB, for their outstanding posters (from left to right).

John Uhlrich, Editor-in-Chief at Wiley VCH presented an award to Quentin Jeangros, EPFL, and Eike Köhnen, HZB, for their outstanding posters (from left to right). © Gruppe Steve Albrecht/HZB

Eike Köhnen received an award for his poster on perovskite silicon tandem cells at the 4th International Conference on Perovskite Solar Cells and Optoelectronics (PSCO) in Lausanne, Switzerland. He is a PhD student in the Junior Research Group on Perovskite Tandem Cells led by Dr. Steve Albrecht.

Tandem cells made of organometallic perovskite layers and silicon have the potential for very high efficiencies. While perovskites in particular convert blue parts of the light spectrum into electrical energy, silicon uses the red parts of the light. Eike Köhnen is working on the design of a so-called monolithic tandem cell.

For his poster, which he presented at the 4th International Conference on Perovskite Solar Cells and Optoelectronics (PSCO) in Lausanne, Switzerland, he received an award sponsored by Wiley Science Publishers.

Köhnen has realized a highly efficient monolithic tandem solar cell with an efficiency of 25 percent, which has also been certified by independent bodies. The tandem cell was manufactured at HZB, the silicon cell being produced at HZB-Institute PVcomB and the perovskite cell at HySPRINT. By optimizing the optical and electrical properties of the tandem-top contact, it was even possible to achieve an efficiency of 26 percent, which is the highest efficiency currently published in the literature for this tandem architecture. Since the spectrum arriving on Earth changes over the course of the day, Köhnen also investigated the influence of the spectrum on the behavior of the tandem solar cell.

arö


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.