Shutdown BESSY II: work has started

<div id="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d" class="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d infoValueContainer">
<div class="readOnlyInfoValue">The experimental Hall of BESSY II. HZB / D.Butensch&ouml;n&nbsp;</div>
</div>

The experimental Hall of BESSY II. HZB / D.Butenschön 

As of 30 July 2018, BESSY II will be down for several weeks. In the summer shutdown, important components in the storage ring tunnel will be replaced and overhauled. The first conversion work for the BESSY VSR project also begins.  Upgrading BESSY II into a variable-pulse-length storage ring (BESSY-VSR) will provide unique experimental conditions for researchers worldwide. The shutdown lasts until 30 September 2018, and user operation will recommence on 30 October 2018.

While the ring is down, the HZB employees will be completely modifying the multipole wavelength shifter, the EDDI beamline and the radiation protection hutches. This space will be needed for installing the cold supply for the superconducting cavities in the storage ring. These are key components in the creation of BESSY VSR. Keeping them cold, however, requires an elaborate infrastructure, which is to be built up in the experimental hall over the next two years.

There is even more that has to be done during this shutdown: colleagues from the Institute for Accelerator Physics are constructing a diagnostics beamline for BESSY VSR in the vicinity of the EMIL hutch. In addition, the two wavelength shifters will be revised and further components (Landau cavities and a CPMU17) will be installed for the EMIL laboratory. Plus, a laboratory for electrochemical experiments on solid-liquid boundary interfaces (BEIChem) is to be built at BESSY II.

You can take a detailed look at everything that will be going on during the shutdown in the HZB Science Blog

(sz)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.