HZB expert contributes to Leibniz platform GraFOx

The platform "GraFOx" of the Leibniz Association bundles the activities and competences of Berlin research institutes and universities in the field of oxide research for electronic applications. Now Prof. Dr. Catherine Dubourdieu has been involved as an Associate Partner. The internationally renowned expert heads the Institute "Functional Oxides for Energy-Efficient Information Technology" at the Helmholtz-Zentrum Berlin.

The Leibniz ScienceCampus GraFOx offers a platform for the exchange of knowledge and the coordination of activities with the aim of gaining fundamental understanding on key issues and of developing novel applications for oxides. GraFOx stands for "Growth and Fundamentals of Oxides (GraFOx) for electronic applications". Catherine Dubourdieu will contribute her many years of experience with multifunctional perovskites including their integration on semiconductors.

 More Information on GraFOx: http://grafox.pdi-berlin.de/

red.

  • Copy link

You might also be interested in

  • Protons against cancer: New research beamline for innovative radiotherapies
    News
    27.11.2024
    Protons against cancer: New research beamline for innovative radiotherapies
    Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.
  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.