Perovskite solar cells: perfection not required!

Simplified cross-section of a perovskite solar cell: the perovskite layer does not cover the entire surface, but instead exhibits holes. The scientists could show that a protective layer is being built up which prevents short circuits.

Simplified cross-section of a perovskite solar cell: the perovskite layer does not cover the entire surface, but instead exhibits holes. The scientists could show that a protective layer is being built up which prevents short circuits. © HZB

Experiments at BESSY II reveal why even inhomogeneous perovskite films are highly functional 

Metal-organic perovskite layers for solar cells are frequently fabricated using the spin coating technique. If you follow the simplest synthesis pathway and use industry-relevant compact substrates, the perovskite layers laid down by spin coating generally exhibit numerous holes, yet attain astonishingly high levels of efficiency. The reason that these holes do not lead to significant short circuits between the front and back contact and thus high-rate charge carrier recombination has now been discovered by a HZB team headed by Dr.-Ing. Marcus Bär in cooperation with the group headed by Prof. Henry Snaith (Oxford Univ.) at BESSY II.

The early metal-organic perovskites exhibited efficiency levels of only a few per cent (2.2 per cent in 2006). That changed quickly, however: the record level now lies considerably above 22 per cent. The equivalent efficiency increase in the current commercially dominant silicon solar cell technology took more than 50 years. The fact that thin films made of low cost metal-organic perovskites can be produced on a large scale for example by spin coating and subsequently baking (whereby the solvent evaporates and the material crystallizes), makes this technology additionally attractive.

Holes in the perovskite film

Nevertheless, the thin perovskite film that results from spin coating on compact substrates is generally not perfect, but instead exhibits many holes. The samples from the pioneering perovskite group headed by Prof. Henry Snaith exhibit these holes as well. The problem is that these holes could lead to short circuits in the solar cell by the adjacent layers of the solar cell coming into contact. This would reduce the efficiency level considerably, which is not observed.

Thin layer is built up

Now Marcus Bär and his group, together with the Spectro-Microscopy group of the Fritz Haber Institute have carefully examined samples from Henry Snaith. Using scanning electron microscopy, they mapped the surface morphology. They subsequently analysed the sample areas exhibiting holes for their chemical composition using spectromicrographic methods at BESSY II. “We were able to show that the substrate was not really exposed even in the holes, but instead a thin layer is being built up essentially as a result of the deposition and crystallization processes there that apparently prevents short circuits”, explains doctoral student Claudia Hartmann.

.. and prevents short circuits

The scientists were able to ascertain at the same time that the energy barrier the charge carriers had to overcome in order to recombine with one another in the event of a direct encounter of the contact layers is relatively high. “The electron transport layer (TiO2) and the transport material for positive charge carriers (Spiro MeOTAD) do not actually come into direct contact. In addition, the recombination barrier between the contact layers is sufficiently high that the losses in these solar cells is minute despite the many holes in the perovskite thin-film”, says Bär.

 

The study is published in Advanced Materials Interfaces (2018): Spatially-resolved insight into the chemical and electronic structure of solution processed perovskites – why to (not) worry about pin-holes, C. Hartmann, G. Sadoughi, R. Félix, E. Handick, H. W. Klemm, G. Peschel, E. Madej, A. B. Fuhrich, X. Liao, S. Raoux, D. Abou-Ras, D. Wargulski, Th. Schmidt, R.G. Wilks,, H. Snaith, and M. Bär

DOI: 10.1002/admi.201701420

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.