Novel soft X-ray spectrometer enables individual steps of photosynthetic water oxidation to be observed

Sketch of the Photosystem II.

Sketch of the Photosystem II. © SLAC

HZB scientists have developed a novel spectrometer at BESSY II that enables researchers to obtain detailed insights about catalytic processes in metalloenzymes. Their international collaboration was successful in delineating individual steps in the catalytic oxidation of water to dioxygen in photosystem II. They published their study in the journal Structural Dynamics. Photosystem II is a part of the of photosynthetic electron transport chain, a process that is responsible for the conversion of solar energy to chemical energy in plants, algae and cyanobacteria.

Photosystem II is a large protein complex that has four manganese and one calcium atoms at its active catalytic centre. Sunlight triggers the process that splits water into oxygen, protons and electrons, which are subsequently utilized to generate carbohydrates that all life depends on.

One of the biggest challenges in understanding this process is observing the individual intermediate steps involved in the four photon-four electron enzymatic cycle. Up until now, it was impossible to investigate experimentally the electronic structure and the chemical reactions occurring at the individual manganese atoms with soft x-ray spectroscopy, because of the difficulties in detecting the small signals and issues with X-ray damage to the delicate biological materials. “And even though spectroscopy using soft X-rays represents one of the most direct methods of mapping  the bonds around the manganese atoms, it was previously impossible to carry out these kinds of measurements”, explains Dr. Philippe Wernet from HZB.

Now an international collaboration with HZB and leading experts in photosystem II research around Junko Yano at the LBNL in Berkeley, and others in the USA, in Sweden, and in France has made important progress using an X-ray free-electron laser at the Linac Coherent Light Source (LCLS) at Stanford (USA), and a novel spectrometer that was developed and tested at the HZB.

Spectrometer developed at HZB

The spectrometer contains a reflection zone plate that acts as a lens for the X-rays, likewise developed at HZB. The spectrometer and reflection zone plate made it possible for the first time to investigate metalloenzymes at extremely low concentrations while in solution, thus in their natural environment.

Intermediate steps observed

The research teams were particularly interested in how the electronic structure of the manganese atoms situated at the centre of the enzyme change. This is because the intermediate steps of the reactions leading up to the actual splitting of water can be firmly identified using that information. The team was able to access some intermediate steps which were generated in situ by visible laser excitation of photosystem II. “With our method we can investigate how nature is able to convert solar energy into chemical energy in plants and algae so successfully", says Markus Kubin, HZB, first author of this study that has now been published in Structural Dynamics.

Other catalytic metal complexes in biological and inorganic systems can also be investigated with the newly developed spectrometer.

Publication in Structural Dynamics 4, 054307 (2017);Soft X-ray Absorption Spectroscopy of Metalloproteins and High-Valent Metal-Complexes at Room Temperature Using Free-Electron Lasers; Markus Kubin, Jan Kern, Sheraz Gul, Thomas Kroll, Ruchira Chatterjee, Heike Löchel, Franklin D. Fuller, Raymond G. Sierra, Wilson Quevedo, Christian Weniger, Jens Rehanek, Anatoly Firsov, Hartawan Laksmono, Clemens Weninger, Roberto Alonso-Mori, Dennis L. Nordlund, Benedikt Lassalle-Kaiser, James M. Glownia, Jacek Krzywinski, Stefan Moellerc, Joshua J. Turnerc, Michael P. Minittic, Georgi L. Dakovskic, Sergey Koroidovf,h, Anurag Kawdeh, Jacob S. Kanady, Emily Y. Tsui, Sandy Suseno, Zhiji Han, Ethan Hill, Taketo Taguchi, Andrew S. Borovik, Theodor Agapie, Johannes Messinger, Alexei Erko, Alexander Föhlisch, Uwe Bergmann, Rolf Mitzner, Vittal K. Yachandra, Junko Yano, Philippe Wernet

doi: 10.1063/1.4986627

red./arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.