Progress in solar technologies – from research to application

EU group project presents its results: high efficiencies with less material

A workshop entitled "European Solar Technology Forum – from Research to Industrial Application" took place at HZB to conclude of the European CHEETAH project on November 30, 2017. More than 100 participants from the most important European research institutes in the field of photovoltaics and from numerous universities came together with representatives from industry in order to discuss the progress achieved by CHEETAH.

Three different types of soclar cells have been greatly improved:

Silicon photovoltaics: wafer thickness cut by half

Efforts in the field of silicon photovoltaics have been directed towards the use of ever-thinner wafers in manufacturing photovoltaic modules. Several modules whose cells were 90-100 microns thick were presented at the workshop. These enable considerable savings in materials compared to standard modules with cell thicknesses of 180 microns.

Reducing material consumption in chalcopyrite solar cells by implementing an integrated lens system.

The approach to saving materials in thin-film solar cells made of chalkopyrites (Cu(In,Ga)Se2) was different: the cells were reduced in area and an integrated lens system incorporated into the module to concentrate the sunlight irradiating the cells. The goal is to achieve an efficiency level at least as high as that of current commercial modules while using considerably less material. The first prototypes already demonstrate that the method works in principle and can even reach higher efficiency levels than standard cells under certain circumstances due to the higher light intensity.

Extending the operating life of hybrid solar cells

The third topic in CHEETAH involved organic and hybrid solar cells. In this part of the project, polymer encapsulation materials were measured in an extensive series of tests and correlated with the operating life of the cells. The operating life of these solar cells could be increased to several years using the best of these polymers.

The presentations can be viewed here

 

Iver Lauermann

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.