EU project CALIPSOplus has started for free access to European light sources

Light sources collaborating in CALIPSOplus

Light sources collaborating in CALIPSOplus

The EU is providing ten million euros in funding for the project CALIPSOplus, submitted by 19 European light sources. The project consortium, of which Helmholtz-Zentrum Berlin is a member, kicked off on May 2017. CALIPSOplus is aimed at promoting the international exchange of scientists and transnational access to the light sources in Europe. Other priorities are to integrate the relatively less active regions of Europe and to initiate research projects with small and mid-sized companies. 

CALIPSOplus has a runtime of four years and is coordinated by Helmholtz-Zentrum Dresden-Rossendorf. In the scope of CALIPSOplus, HZB manages the work package “Dissemination and Training” and is involved in the research project MOONPICS on the metrology of nanometre lenses.

The project partners will be taking targeted measures to advertise the outstanding analytical methods available here to researchers from Central and Eastern Europe who have so far rarely used the European light sources. This will help to integrate them more strongly into the European scientific landscape. “It is important that we approach the scientists from these countries in person, locally, and promote the opportunities at the light sources. So it’s great that the training programme is one of the priorities of CALIPSOplus,” says Dr. Antje Vollmer, who is coordinating the activities for HZB and who manages user coordination at HZB. Among other things, HZB is planning workshops at universities of the 13 youngest EU countries. Furthermore, there will be a “twinning and exchange programme” that will invite scientists from these countries to collaborate on an equal footing with experienced users of light sources.

The kick-off event for CALIPSOplus was held at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) on 18 and 19 May 2017. More information

Website Wayforlight

Wayforlight.eu is currently being expanded and provides information about the experimental stations at Europe’s light sources and details on how to apply for measuring time.

(sz)

  • Copy link

You might also be interested in

  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Innovative battery electrode made from tin foam
    Science Highlight
    24.02.2025
    Innovative battery electrode made from tin foam
    Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.
  • Perovskite solar cells: thermal stress is the key to their long term stability
    Science Highlight
    21.02.2025
    Perovskite solar cells: thermal stress is the key to their long term stability
    Perovskite solar cells are highly efficient and low cost in production. However, they still lack stability over the decades under real weather conditions. An international research collaboration led by Prof. Antonio Abate has now published a perspective on this topic in the journal Nature Reviews Materials. They explored the effects of multiple thermal cycles on microstructures and interactions between different layers of perovskite solar cells. They conclude that thermal stress is the decisive factor in the degradation of metal-halide perovskites. Based on this, they derive the most promising strategies to increase the long-term stability of perovskite solar cells.