Intersolar Europe in Munich: HZB research meets solar industry

Intersolar Europe is the world&rsquo;s leading exhibition for the solar industry and its partners and takes place annually at the Messe M&uuml;nchen exhibition center in Munich, Germany.</p>
<p>&copy; Solar Promotion GmbH

Intersolar Europe is the world’s leading exhibition for the solar industry and its partners and takes place annually at the Messe München exhibition center in Munich, Germany.

© Solar Promotion GmbH

At the major international photovoltaics exhibition from 31 May to 2 June 2017, Helmholtz-Zentrum Berlin (HZB) will be exhibiting solar energy research projects and presenting opportunities for industrial cooperation in the field of photovoltaics (PV).

Intersolar Europe is a world leading event where manufacturers, suppliers, distributors and service providers come to learn of new developments in the solar industry. A team from Helmholtz-Zentrum Berlin will be presenting its research in the field of renewable energies at this exhibition in Hall A2, Booth 574 – in particular, the new Helmholtz Innovation Lab HySPRINT and the long-established competence centre for photovoltaics PVcomB. These two institutes primarily address the scientific-technical issues of technology transfer and cooperate closely with industrial partners.

In the Helmholtz Innovation Lab HySPRINT, silicon-based materials are being combined with organometallic perovskite crystals to develop so-called hybrid tandem cells. Such cells can be used for solar generation of electricity or hydrogen.

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) has industrial reference lines for manufacturing CIGS and silicon photovoltaics. Teams of HZB experts are collaborating with industry to develop novel thin-film technologies and products. Joint research projects with industrial partners have already culminated in many successful innovations.

Research into new material systems for photovoltaics is an important focal topic at HZB. The Centre is specialised in so-called energy materials that convert or store energy. This includes solar cells, material systems for generating hydrogen from sunlight, and magnetic material systems for developing energy-efficient information technologies. For studying interfaces and surfaces of thin films, HZB operates the photon source BESSY II and a series of CoreLabs with latest generation equipment.

HZB’s info stand is in Hall A2, Booth 574 (A2.574)

arö

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.