Trends and pathways to high-efficiency perovskite solar cells

The data show band gaps and efficiency levels of various perovskite materials. The efficiency levels for high band gaps fall due to undesired halide segregation effects.

The data show band gaps and efficiency levels of various perovskite materials. The efficiency levels for high band gaps fall due to undesired halide segregation effects. © HZB

Perovskite  solar cells have been the big surprise over the last while: inside of only a few years, their efficiency level has been increased from just under 10 % to fully 22 %. There has never been such rapid progress in a new material for solar cells. Scientists around the world are therefore working on this new class of materials. Eva Unger and Steve Albrecht from Helmholtz-Zentrum Berlin (HZB) have evaluated trends in the advancement of perovskite materials in an invited review article in Journal of Materials Chemistry A. They point out what opportunities exist for advancing this class of materials, combining them with other semiconductors, and where limitations lie. 

Scientists from all over the world are fascinated by perovkite solar cells. Not only, because of the rapid progress in their efficiency levels. In addition, perovskite materials may convert spectral regions of light into electrical energy which can be used by silicon-based solar cells only relatively inefficiently. The combination of the two materials into a tandem solar cell allows better utilisation of the sunlight and hence promises particularly high efficiency levels.

New HZB focus on perovskite

The combination of perovskite and silicon layers into tandem modules is an important new research priority at the Helmholtz-Zentrum Berlin. Two new Helmholtz Young Investigator Groups (YIGs) headed by Dr. Eva Unger and Dr. Steve Albrecht are working on this within the HySPRINT Innovation Lab.
At the invitation of the Journal of Materials Chemistry A, Unger and Albrecht have now compiled a review article for the special edition “Emerging Young Investigators” covering the advancement of this technology for perovskite materials with various absorption regions.

Advantage: variable band gaps

The authors compare a large number of data sets from experiments with perovskite materials of various chemical compositions. One of the advantages of this class of materials for employment in tandem cells is precisely that the chemical composition of perovskites can sharply influence what spectral region of sunlight is absorbed. Variations in the ratio of halogens such as bromine or iodine affect the band gaps and therefore the spectral region of the light to be absorbed. Larger band gaps that allow absorption of the green and blue regions would be needed to perfectly complement silicon cells.

Limitation: Phase segregation

“By compiling all of the pertinent data, we were able to document the improvement in efficiency level over the prior years, but also demonstrate the limitations”, says Unger. In order to achieve the desired higher band gap, bromine as well as iodine atoms must be uniformly incorporated into the crystal lattice. However, many materials exhibit an undesired effect at present when illuminated with light: Areas form in the lattice that are dominated by bromine, and other areas in which iodine is predominantly found. This phase segregation causes the efficiency level to be considerably below the expected theoretical value (see illustration).

Good news for silicon based tandem solar cells

Now the question is whether this effect can be understood and how to go about dealing with it, write the two researchers. There is already good news for silicon-based tandem solar cells: all the materials that would ideally complement silicon known so far appear to be stable over time. This means there are no show-stoppers for the development of tandem perovskite/silicon solar cells as a high-efficiency solar module. 

Published in:J. Mater. Chem. A, 2017, Advance Article
Roadmap and roadblocks for the band gap tunability of metal halide perovskites
E. L. Unger, L. Kegelmann,  K. Suchan,  D. Sörell, L. Kortec  and  S. Albrecht

DOI: 10.1039/C7TA00404D

arö


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.