HZB and Freie Universität Berlin establish the joint research group “X-Ray Microscopy” for studying complex cellular processes

In May this year, the joint research group “X-Ray Microscopy” was launched, combining the expertise of teams led by Prof. Dr. Gerd Schneider (Helmholtz-Zentrum Berlin) and Prof. Dr. Helge Ewers (Freie Universität Berlin). While Ewers’ group contributes its experience in the field of optical microscopy and biological research, the HZB workgroup is responsible for X-ray microscopy at the synchrotron source BESSY II. The two methods help researchers to gain a detailed insight into the processes taking place inside cells.

We are very pleased about the new cooperation with Prof. Ewers’ workgroup. It gives our own activities in this field a much stronger connection to the biological research being done at the university,” says Prof. Dr. Gerd Schneider. The core duties of his department at HZB include making advancements to the x-ray microscopes and lenses at the synchrotron source BESSY II. The active exchange between the new cooperation partners will give a new boost to method development, says Schneider. Prof. Dr. Helge Ewers is also excited about the future-oriented cooperation: “X-ray microscopy opens up entirely new possibilities for us in the research of intracellular processes.”

The joint research group is all about the complementary use of optical and X-ray microscopy. Optical microscopy and super-resolution methods are excellent for locating proteins marked with dye molecules in tissue samples. X-ray microscopy, in turn, allows correlative imaging of the distribution of proteins, viruses or nanoparticles over a relatively large section in high-resolution and three-dimensions. The two microscopy methods thus deliver a comprehensive picture of the intracellular structures and processes.

After a successful upgrade, the X-ray microscope TXM at the synchrotron source BESSY II is now available again to users. Aside from biological studies, which can now be conducted with the combined expertise in the joint research group, the X-ray microscope is used above all for exploring various questions of materials and energy research.

(sz)

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.