X-Ray microscopy: HZB-TXM is back in operation

Comparison of the same specimen at the old Beamline (left) and the new HZB-XM-Beamline (right).

Comparison of the same specimen at the old Beamline (left) and the new HZB-XM-Beamline (right). © HZB

The X-ray microscope (HZB-TXM) is back in operation. The TXM offers significantly  better quality images compared to the former X-ray microscopy station.

It is located at the brand-new U41-L06-PGM1-XM Beamline, which was designed to extend the available photon energy range to the tender X-ray regime (2 keV -2,5 keV). This will allow accessing the silicon, phosphor and sulphur K-edges to study crucial processes in cell membranes and catalysts.

Pictures of identical test objects demonstrate the improved performance of the new TXM. The X-ray microscopy is much in demand by users worldwide and the new TXM is already overbooked for the beamtime allocation period 2017-II. First user experiments have been already conducted.

More information

Peter Guttmann


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.