Nanodiamonds as energy materials: tuning the functionalities

Nanodiamonds have been modified by attaching different molecules.

Nanodiamonds have been modified by attaching different molecules. © HZB

An international team has shed light onto interactions between nanodiamonds and water molecules. Experiments at synchrotron sources showed how hydrogenated groups on nanodiamond surfaces change the network of hydrogen bonds in the aqueous environment and may potentially influence the catalytic properties of nanodiamonds, for instance for the production of solar fuels from CO2 and light.

You think, diamonds are shiny, transparent and will sink in water? Well, it depends. Diamonds change a lot when they become really tiny: nanodiamonds with diameters of some 10-9 m tend to form a black and oily shimmering dispersion in water, a colloid. Such nanodiamonds in water have a wide variety of applicationsin medicine, chemistry and as metal-free catalysts for solar fuel production from CO2.

The nanoparticle−water interface plays a central role in many applications: it affects the colloidal stability, the optical properties and the chemical and catalytic reactivity of the nanoparticles. What happens exactly at the interface between nanodiamonds and water molecules was up to now largely unknown.

Now, an international cooperation of Russian, Japanese, American, French and German science institutes has shed light onto the interactions of nanodiamonds and water molecules. With a combination of spectroscopic methods at synchrotron lightsources BESSY II in Berlin and, UVSOR III in Japan, they analysed the interactions between water molecules and nanodiamonds. To this goal they modified the nanodiamond’s surface with different molecular groups, attaching hydrogen (-H), carboxyl groups (-COOH), hydroxyl groups (–OH), and other polyfunctional surface terminations.

Hydrogenated Nanodiamonds most promising for CO2 reduction

Surface terminations had a strong influence on the hydrogen bond networks, they observed. Whereas only slight modifications were observed for oxidized surfaces, hydrogenated nanodiamonds dramatically modified the water hydrogen bond network. “Hydrogenated groups induce a long-range disordering of water molecules around nanodiamonds and hydrogen-bonds between these water molecules are weaker than those found in bulk water”, HZB-scientist Dr. Tristan Petit explains.  The scientists propose that the water rearrangement is due to the accumulation of electrons at the diamond-water interface, which could be of particular interest for (photo)catalytic applications, i.e. for the production of solar fuels, from carbon dioxide and light.  

 “Hydrogenated diamond surfaces have the ability to efficiently generate solvated electrons in water for CO2 reduction under UV light exposure. The unique water structure associated with hydrogenated surface groups would certainly play an underestimated role in this exciting process””, Petit expects.

The Journal of Physical Chemistry, Part C (2017): "Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds"; Petit, Tristan; Puskar, Ljiljana; Dolenko, Tatiana; Choudhury, Sneha; Ritter, Eglof; Burikov, Sergey; Laptinskiy, Kirill; Brzustowski, Quentin; Schade, Ulrich; Yuzawa, Hayato; Nagasaka, Masanari; Kosugi, Nobuhiro; Kurzyp, Magdalena; Venerosy, Amélie; Girard, Hugues; Arnault, Jean-Charles; Osawa, Eiji; Nunn, Nicholas; Shenderova, Olga; Aziz, Emad.

DOI: 10.1021/acs.jpcc.7b00721

arö


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.