Young investigator group at HZB: Scaling perovskite cells

Dr. Eva Unger leads the Young Investigator Group Hy-Per-FORME.

Dr. Eva Unger leads the Young Investigator Group Hy-Per-FORME. © privat

The new Young Investigator Group Hy-Per-FORME led by Dr. Eva Unger is working on scaling all processing steps to enable manufacturing of perovskite solar cells on larger areas, thus brigding he gap between lab and industry.

Dr. Eva Unger is starting a Young Investigator Group (YIG) at HZB, co-financed by the Federal Ministry for Education and Science (BMBF). The activities of the Unger group will be an important contribution within the newly-founded HySPRINT Innovation lab aiming at the realization of large-area, stable and efficient hybrid tandem device technology based on a combination of established silicon photovoltaic technology and emerging perovskite semiconductor devices.

To achieve this goal, developing and optimizing scalable deposition methods for the recently evolved hybrid perovskite semiconductors is one of the key aspects. The YIG of Unger therefore focusses on the formation and scaling the deposition of hybrid perovskite semiconductors using slot-die coating and ink-jet printing as a solution-based processing technology.

Originally from Germany, Eva Unger did her PhD at Uppsala University, Sweden and carried out postdoctoral work at Stanford University and Lund University through a stipend from the swedish Marcus and Amalia Wallenberg Foundation. Prior to starting the YIG, she has been working as a visiting researcher at Helmholtz Center Berlin funded by an International Career Grant co-funded by the Swedish Research Council and Marie-Skłodowska-Curie Actions. She will be co-affiliated with Lund University, Sweden and aims to strengthen cooperations with Lund University, Vrije Universiteit Amsterdam and the Universities in Berlin and Brandenburg.

red.

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • Rutger Schlatmann re-elected as ETIP PV Chair
    News
    24.10.2024
    Rutger Schlatmann re-elected as ETIP PV Chair
    The European Technology and Innovation Platform for Photovoltaics (ETIP PV) was created by the European Commission in order to promote photovoltaic technologies and industries in Europe. Now, the ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.
  • Perovskite solar cells: TEAM PV develops reproducibility and comparability
    News
    22.10.2024
    Perovskite solar cells: TEAM PV develops reproducibility and comparability
    Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.