Neutron instrument BioRef arrived safely in Down Under

The SPATZ team of ANSTO was glad about the arrival of the former HZB neutron instrument BioRef. It will be set up until 2018 in Australia. photo: ANSTO.

The SPATZ team of ANSTO was glad about the arrival of the former HZB neutron instrument BioRef. It will be set up until 2018 in Australia. photo: ANSTO.

As reported, the neutron instrument BioRef will be set up at the “Australian Centre for Neutron Scattering” of ANSTO. Approximately 257 components were safely packed in 43 wooden crates weighing just under 30 tonnes for the sea voyage from Hamburg to Port Botany, Australia. On 14 February the colleagues from ANSTO told us: the three shipping containers arrived safely after a two-month journey from Germany.

The ship transporting the packaged crates stopped at seven ports on the 45-day voyage which covered over 11,800 nautical miles.

The ship transporting the packaged crates stopped at seven ports on the 45-day voyage which covered over 11,800 nautical miles. - See more at: http://www.ansto.gov.au/AboutANSTO/MediaCentre/News/ACS124610#sthash.WLX9dQNg.bL2NpYAE.dpuf

ANSTO and HZB negotiated the transfer of the instrument from the BER-II Research Reactor at Helmholtz-Zentrum Berlin (HZB) and renewed a MOU for scientific collaboration with the renowned German research organisation in 2016. The instrument will be set up at the Australian Centre for Neutron Scattering (ACNS) until 2018. The new name is SPATZ, the German word for sparrow. It follows the tradition of the naming convention of other instruments at the Australian Centre for Neutron Scattering, which are named after Australian and other fauna. SPATZ will be available for user from Germany, too.

Read more here

(sz)


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.