Prof. Dr. Martina Schmid assumes the professorship of experimental physics at the University of Duisburg-Essen

On 1 January 2017, Martina Schmid assumed the W2 professorship of “experimental physics” in the Physics department of the University of Duisburg Essen. From 2012 to the end of 2016, Martina Schmid headed the Helmholtz Young Investigator Group “Nano-Optical Concepts for Photovoltaics” at HZB.

"I look forward to my new function at the University of Duisburg-Essen because it gives me the opportunity to continue pursuing my research topics in the field of solar energy and to develop new ideas," Martina Schmid says about her new appointment at the University of Duisburg-Essen.

Before her move, Martina Schmid and her team at HZB researched into nano-optical concepts for chalcopyrite solar cells. These solar cells already achieve high efficiencies, but require rare and expensive materials to produce. The young investigator group’s aim was therefore to minimise the usage of rare elements in chalcopyrite solar cells while maintaining or even increasing their efficiency.

"By integrating nanostructures into ultra-thin CIGSe solar cells, we successfully demonstrated a significant increase in the short-circuit current density. In cooperation with the Institute for Atomic and Molecular Physics (AMOLF) in the Netherlands, we were able to achieve up to 93 percent of the maximum value attained by a thick CIGSe solar cell," Martina Schmid reports. The short-circuit current is the maximum current that a solar cell or photovoltaic module can deliver.

In a project with the Federal Institute for Materials Research and Testing (BAM) and the Leibniz Institute for Crystal Growth (IKZ), Martina Schmid’s HZB young investigator group also succeeded in producing CISe absorbers that considerably reduce the usage of rare elements. Papers were published for both results in which the EE-NOPT group was involved.

Martina Schmid will continue to supervise the members of her former young investigator group until they have finished their final theses; they have since been integrated into various organisational units at HZB.

Short biography:

Prof. Dr. Martina Schmid studied physics at the University of Augsburg and completed her PhD at Helmholtz-Zentrum Berlin on the optimization of tandem solar cells based on chalcopyrites. She earned several distinctions for her thesis, including the Carl-Ramsauer Award of the Deutsche Physikalische Gesellschaft zu Berlin (DPG). After a research stay at the California Institute of Technology (Caltech), she established her young investigator group at HZB in 2012.

(sz)


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.