Helmholtz-Zentrum Berlin is establishing a Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide

Dr. Matthew Mayer

Dr. Matthew Mayer

Dr. Matthew T. Mayer from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, will be putting together a Helmholtz Young Investigator Group in the field of energy materials research at HZB. He will be researching into how carbon dioxide and water can be converted electrochemically into hydrocarbons such as methane and methanol using renewable energies. Matthew Mayer will receive 300,000 euros per year over a period of five years for establishing and running his Young Investigator Group.

Researchers are faced with the major challenge of developing new solutions for reducing the harmful emissions of carbon dioxide into our environment. One feasible solution is to use clean energy that will convert carbon dioxide and water electrochemically into hydrocarbons such as methane, methanol and ethylene, which are important raw materials for the chemical industry. The biggest hurdle will be improving the energy efficiency, reaction rates and yields from CO2 catalysis.

Research chemist Matthew T. Mayer is looking to produce novel electrocatalyst materials possessing heterogeneous bimetallic surfaces. Using synchrotron, X-ray and photoelectron spectroscopy, he will be observing these catalytic processes in situ and in operando in order to reveal detailed chemical information about the catalyst–molecule interactions in real time. In this way, Mayer wishes to deliver new insights into guided catalyst design, catalytic mechanisms and principles of cell design. These insights should help to reveal the potential of electrochemical CO2 reduction as a technology for producing valuable hydrocarbons.

“With Dr. Matthew Mayer, we are gaining a highly distinguished scientist whose field of research superbly complements our projects in energy materials research. His work will benefit from the many facilities for analysis and synthesis at HZB, and especially from their combination with the brilliant X-ray light from BESSY II,” says Prof. Dr. Anke Kaysser-Pyzalla, scientific director of HZB. 

Matthew T. Mayer is from the U.S., where he studied chemistry at Boise State University and earned his doctorate at Boston College. He currently heads the “Solar Fuels” group at the Laboratory of Photonics and Interfaces, led by Prof. Dr. Michael Graetzel at the École Polytechnique Fédérale de Lausanne. In this group, Matthew T. Mayer is investigating how sunlight can be converted directly into fuels. Prior to this, he conducted research for several years at Boston College in the USA. He holds two patents and has published numerous papers. He will be arriving at HZB to put together his Young Investigator Group in May 2017.

Two new Helmholtz Young Investigator Groups kick off in 2017

In 2016, HZB was especially successful in bidding for Helmholtz Young Investigator Groups. In a highly competitive process with 49 applications, thirteen new Young Investigator Groups in the Helmholtz Association were approved, two of which are from HZB. Alongside Matthew T. Mayer, HZB has acquired Dr. Antonio Abate, whose Helmholtz Young Investigator Group aims to improve the long-term stability of perovskite solar cells.

 About the Helmholtz Young Investigators Programme

The research programme fosters highly qualified young researchers who completed their doctorate three to six years ago. The heads of the Young Investigator Groups receive support through a tailored training and mentoring programme and are assured long-term prospects at HZB. One aim of the programme is to strengthen the networking of Helmholtz centres and universities. The costs – 300,000 euros per year per group over five years – are covered half by the Helmholtz President’s Initiative and Networking Fund, and half by the Helmholtz centres.

(sz)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.