European project for thin film Kesterite Solar cells has reached its goals

<span class="st">&nbsp;</span>

 

Eleven partners from different countries have joined forces in the EU-research project KESTCELLS from September 2012 until 31. August 2016. The mission was to train a new generation of experts and to increase the efficiencies of Kesterite solar cells. Now, at the end of the project, these goals have been perfectly reached.

Fourteen young scientists have become experts in the field and the cooperation managed to increase the efficiencies of Kesterite solar cells up to 11.8 %. This is even more than the 10 % threshold fixed as initial objective. HZB-scientists Iver Lauermann, Susan Schorr and Thomas Unold have been participating in the KESTCELLS-Project as Principal Investigators. The project was funded with 3.7 Million Euros by the European Union.


More information: http://kestcells.eu/

Background-Information:
In 2012 the European Commission identified a significant lack of academic institutions in Europe able to train new researchers in the field of thin based solar cells based on earth abundant materials. Being aware of this, the Research Executive Agency (REA) funded KESTCELLS with 3.7M€ to develop an ambitious program for training 14 researchers in 11 different institutions covering from Research Centers and Universities to Industries all around Europe.

For four years the partners of this ITN-network have worked with a double objective; in first place making a significant advance in the kesterite research of Thin-Film PV technologies. This field offers a set of advantages such as a low consumption of raw materials, development of highly automated and efficient manufacturing processes, low carbon footprint and better performances at elevated temperatures than the standard counterparts. Actually, it is expected that these technologies will lead PV research in the next years.

Secondly, the project has trained 12 PhD students and 2 experienced researchers recruited among more than three hundred candidates all around the world 

All in all, the project has allowed publishing more than fifty papers in peer review articles, and supported 6 Theses. From a scientific point of view, it has also made a significant step forward in the characterization of fundamental properties of kesterites that will allow understanding the main challenges on these materials and a contribution to a strategy to overcome them in the mid-term.

In fact, the design and development of new kesterite based solar cells with an efficiency of 11.8% has been achieved, which is beyond the 10% threshold fixed as initial objective of the project.  The project has contributed to the competitiveness of the European PV Industry, helping to increase the production of energy through renewable sources according to the 20/20/20 target established by the European Commission and the SET-Plan.

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no [316488]. Sole responsibility lies with the authors and the European Commission is not responsible for any use that may be made of the information contained therein.

red.

  • Copy link

You might also be interested in

  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.