Sound artist Gerriet K. Sharma designs sound sculptures of BESSY VSR

 Gerriet K. Sharma is setting up the icosahedral loudspeaker, photo: Kristijan Smok (izlog)

 Gerriet K. Sharma is setting up the icosahedral loudspeaker, photo: Kristijan Smok (izlog)

From 13 to 19 July 2016, the artist will be recording sounds on location

The electron storage ring BESSY II is the backdrop for an extraordinary art project. Sound artist Gerriet K. Sharma of the University of Music and Performing Arts Graz will translate the principles of accelerator physics into three-dimensional acoustic compositions. From 13 to 19 July 2016, the artist will be on location to record sounds directly in the electron storage ring. 

The electron storage ring BESSY II is the backdrop for an extraordinary art project. Sound artist Gerriet K. Sharma of the University of Music and Performing Arts Graz will translate the principles of accelerator physics into three-dimensional acoustic compositions. From 13 to 19 July 2016, the artist will be on location to record sounds directly in the electron storage ring. 

Gerriet K. Sharma found inspiration for this work in the expansion project BESSY VSR. Accelerator experts at HZB want to expand the synchrotron radiation source BESSY II into a variable-pulse-length storage ring – as the first team to do so worldwide. Each measuring station will then offer a choice between long and short light pulses. The artist has been working on this extraordinary project together with HZB researchers since the spring of 2016, to transform accelerator physics into an extraordinary 3D sound experience.

To generate the unique soundscapes of BESSY VSR, Gerriet K. Sharma is using an icosahedral loudspeaker. The acoustic figures it produces move almost physically through the room. “The combination of art and science is very prominent in this project. Both work with frequencies, amplitudes and overlays – just in different media,” says Kerstin Berthold, who is supervising the art project at HZB together with researchers from the Institute for Accelerator Physics.

After many months of intensive compositional work, the artist plans to present his work in the summer of 2017.

Notice for employees:
While he is working at BESSY II, the artist will be sampling tone and sound sequences in the ring, foyer and auditorium. Please understand that it may briefly get a little louder than usual, at times.

Project partners:

Gerriet K. Sharma (artist)
studied media art at the Academy of Media Arts Cologne, and composition and computer music at the University of Music and Performing Arts Graz. He is currently writing his doctoral thesis at the renowned art university in Graz on “Composing Sculptural Sound Phenomena in Computer Music”.  Among other distinctions, he received the 2008 German Soundart Award.

Helmholtz Zentrum Berlin

Institute for Accelerator Physics

Paul Goslawski, Godehard Wüstefeld and Martin Ruprecht

Communication Departement

Kerstin Berthold

(kb/sz)

  • Copy link

You might also be interested in

  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.