Helmholtz Innovation Labs: HySPRINT at HZB

HZB will be setting up the new Helmholtz HySPRINT Innovation Lab for jointly developing new combinations of materials and processes in energy applications with commercial partners. Silicon and metal-organic perovskite crystals will be the centre point of the Lab’s work. The Helmholtz Association is supporting the project for the next five years with 1.9 million Euros from its Initiative and Networking Fund, with additional contributions from HZB itself as well as from industry.

The Helmholtz Association is supporting a total of seven Helmholtz Innovation Labs in order to strengthen the transfer of research results to the applications domain. The Association is making about twelve million Euros available over the next five years for setting up and operating the Innovation Labs.

The HZB proposal was selected from a field of 27 competing applications. HySPRINT stands for “Hybrid Silicon Perovskite Research, Integration & Novel Technologies”. It will focus on hybrid materials and components based on silicon and perovskite crystals able to be employed for energy conversion in photovoltaics as well as for solar hydrogen production.

“We intend to further develop silicon hybrid technology, liquid-phase crystallisation of silicon, nano-print lithography as well as the implementation of prototypes by means of 3D techniques for microcontacts in cooperation with industrial partners – and demonstrate the potential for industrial-scale production”, says Professor Bernd Rech from the HZB Institute for Silicon Photovoltaics.

The Innovation Lab will be set up as a core lab at HZB and will work closely with the HZB Institute PVcomB. Professor Anke Kaysser-Pyzalla, Scientific Director of HZB poitbs out: “HySPRINT will establish itself as a creative pillar of Technology Transfer at HZB and within the Helmholtz Association.”

red.


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.