Energy Materials: Dr. Catherine Dubourdieu sets up the institute “Functional Oxides for Energy-Efficient Information Technology” at the HZB

Dr. Catherine Dubourdieu is an internationally recognised expert in the field of functional oxides.

Dr. Catherine Dubourdieu is an internationally recognised expert in the field of functional oxides.

The Helmholtz-Zentrum Berlin (HZB) is boosting its energy materials research and setting up a new institute. Through the Helmholtz Recruitment Initiative, the HZB has gained renowned researcher Catherine Dubourdieu as Institute Director. In the newly established institute “Functional Oxides for Energy-Efficient Information Technology”, she is researching into thin films of metal oxides that make especially promising candidates for information technologies of the future. Dubourdieu formerly worked at the institute “Nanotechnologies de Lyon” of the CNRS and has been at the HZB since 11 April 2016.

The physicist is an internationally recognised expert in her field. After holding posts in France and the USA, she is now researching into functional oxides at the HZB. These are thin films of metal oxides that are considered an especially promising class of materials for energy-efficient components. Thin films of different metal oxides stacked together into “sandwich” structures exhibit entirely new mechanical, optical and electromagnetic properties.

The synchrotron source BESSY II offers Catherine Dubourdieu a diverse range of instruments for her energy material research. These include tools for analysing processes in energy materials in situ and in operando. In particular, Dubourdieu will install her own synthesis and analytical chamber in the Energy Materials In situ Laboratory (EMIL). The physicist is also involved in establishing the Helmholtz Energy Materials Foundry (HEMF) at the HZB. There, they are creating ultra-modern laboratories for material synthesis, which will also be available for use by external researchers.

Catherine Dubourdieu will be collaborating closely with other HZB teams who are studying material systems for information technologies, and above all with the institute “Quantum Phenomena in Novel Materials” and the department “Materials for Green Spintronics”.

She will be giving a talk on 23 June at 1 p.m. at the Lise Meitner Campus Wannsee.


Short biography: Catherine Dubourdieu studied and received her PhD degree in physics in Grenoble.  After a postdoctoral fellowship at the Stevens Institute of Technology in Hoboken (New Jersey), she researched at the Laboratoire des Matériaux et du Génie Physique (LMGP) of the CNRS in Grenoble until 2009. Between 2009 and 2012, she was a visiting researcher at the IBM T.J. Watson Research Center in Yorktown Heights (NY, USA). There, she worked in the field of monolithic integration of ferroelectric oxides on silicon with the aim of producing energy-saving logic devices. In June 2012, she moved to the institute “Nanotechnologies de Lyon” of the CNRS, developing new projects for functional oxide research.

About the Helmholtz Recruitment Initiative
The Helmholtz Recruitment Initiative is the research organisation’s programme to support joint appointments with universities and to promote outstanding scientists. Selection criteria include, for example, internationally recognised excellence and an international background. The initiative is equal opportunity.

(arö/sz)

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Martin Keller elected new president of the Helmholtz Association
    News
    30.10.2024
    Martin Keller elected new president of the Helmholtz Association
    The Helmholtz Association has appointed internationally respected US-based scientist Martin Keller as its new president. Her has lived in the United States for nearly three decades, during which he has held various scientific leadership roles at prominent institutions. Since 2015, Keller has directed the National Renewable Energy Laboratory (NREL) in Golden, Colorado. His term begins on 1.11. 2025.