Energy Materials: Dr. Catherine Dubourdieu sets up the institute “Functional Oxides for Energy-Efficient Information Technology” at the HZB

Dr. Catherine Dubourdieu is an internationally recognised expert in the field of functional oxides.

Dr. Catherine Dubourdieu is an internationally recognised expert in the field of functional oxides.

The Helmholtz-Zentrum Berlin (HZB) is boosting its energy materials research and setting up a new institute. Through the Helmholtz Recruitment Initiative, the HZB has gained renowned researcher Catherine Dubourdieu as Institute Director. In the newly established institute “Functional Oxides for Energy-Efficient Information Technology”, she is researching into thin films of metal oxides that make especially promising candidates for information technologies of the future. Dubourdieu formerly worked at the institute “Nanotechnologies de Lyon” of the CNRS and has been at the HZB since 11 April 2016.

The physicist is an internationally recognised expert in her field. After holding posts in France and the USA, she is now researching into functional oxides at the HZB. These are thin films of metal oxides that are considered an especially promising class of materials for energy-efficient components. Thin films of different metal oxides stacked together into “sandwich” structures exhibit entirely new mechanical, optical and electromagnetic properties.

The synchrotron source BESSY II offers Catherine Dubourdieu a diverse range of instruments for her energy material research. These include tools for analysing processes in energy materials in situ and in operando. In particular, Dubourdieu will install her own synthesis and analytical chamber in the Energy Materials In situ Laboratory (EMIL). The physicist is also involved in establishing the Helmholtz Energy Materials Foundry (HEMF) at the HZB. There, they are creating ultra-modern laboratories for material synthesis, which will also be available for use by external researchers.

Catherine Dubourdieu will be collaborating closely with other HZB teams who are studying material systems for information technologies, and above all with the institute “Quantum Phenomena in Novel Materials” and the department “Materials for Green Spintronics”.

She will be giving a talk on 23 June at 1 p.m. at the Lise Meitner Campus Wannsee.


Short biography: Catherine Dubourdieu studied and received her PhD degree in physics in Grenoble.  After a postdoctoral fellowship at the Stevens Institute of Technology in Hoboken (New Jersey), she researched at the Laboratoire des Matériaux et du Génie Physique (LMGP) of the CNRS in Grenoble until 2009. Between 2009 and 2012, she was a visiting researcher at the IBM T.J. Watson Research Center in Yorktown Heights (NY, USA). There, she worked in the field of monolithic integration of ferroelectric oxides on silicon with the aim of producing energy-saving logic devices. In June 2012, she moved to the institute “Nanotechnologies de Lyon” of the CNRS, developing new projects for functional oxide research.

About the Helmholtz Recruitment Initiative
The Helmholtz Recruitment Initiative is the research organisation’s programme to support joint appointments with universities and to promote outstanding scientists. Selection criteria include, for example, internationally recognised excellence and an international background. The initiative is equal opportunity.

(arö/sz)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.