Common platform for macromolecular crystallography at European synchrotrons

MXcuBE Meeting from 1st - 2nd of December 2015 at Alba, Barcelona. The meetings make sure that the devenlopment of MXcuBE3 closly fits to the needs of the users.&nbsp;</p>
<p>Photo: <span>Jordi Juanhuix/ALBA</span>

MXcuBE Meeting from 1st - 2nd of December 2015 at Alba, Barcelona. The meetings make sure that the devenlopment of MXcuBE3 closly fits to the needs of the users. 

Photo: Jordi Juanhuix/ALBA

Researchers use high-intensity X-ray light from synchrotron radiation sources to decipher the structures of biological molecules and thus the blueprints of life. A cooperation agreement has been effective since 2012 to establish common software standards at several European sources. Its aim: The eight synchrotrons involved want to create user-friendly, standardised conditions at the 30 experimental stations for macromolecular crystallography, which will greatly facilitate the work of research groups. In the new project “MXCuBE3”, the existing software platform is being adapted to include the latest developments in technology.


Many of the beamlines for macromolecular crystallography have been extensively modernised at various synchrotrons over the past few years. With new equipment, such as the latest high-resolution detectors, this opens up all new possibilities for experimentation. The common software platform MXCuBE2 now has to be adapted as well to keep up with this trend. The Curatorship has accordingly called for a new, overhauled version to be developed. The software solution MXCuBE3 will allow users to control their experiments via web applications. The upgrade will also guarantee MXCuBE3 will continue to run on computers with future operating systems, and will improve the connection to the sample database ISPyB.

Involved in the cooperation are the Helmholtz-Zentrum Berlin, the ESRF, the European Molecular Biology Laboratory, Global Phasing Limited, MAX-VI-Lab in Sweden, SOLEIL in France, ALBA in Spain and DESY.


Read up on this in more detail in the ESRF magazine

(sz)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.