Freigeist Fellowship for Tristan Petit

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship.

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship. © HZB

For his project on nanodiamond materials and nanocarbon, Dr. Tristan Petit has been awarded a Freigeist Fellowship from the VolkswagenStiftung. The grant covers a five-year period and will enable him to establish his own research team. The VolkswagenStiftung is funding with these prestigious fellowships outstanding postdocs planning original research that transcends the bounds of their own field.

Following his doctoral studies, Dr. Tristan Petit joined the HZB team of Prof. Emad Aziz supported by a post-doctoral stipend from the Alexander von Humboldt Foundation. He had already investigated surface modification of nanodiamonds while exploring their potential for biomedical applications during his doctoral research at the Diamond Sensors Laboratory (CEA) in Gif sur Yvette, France. Petit has since expanded his research interests. This is because nanodiamond materials can also exhibit catalytic effects, in particular when irradiated by sunlight. One dream is to develop synthetic nanodiamond materials for manufacturing solar fuels like methane using sunlight and carbon dioxide, thereby storing solar energy chemically. Aziz and Petit are now working on this project under the European DIACAT research programme.

As a Freigeist Fellow, Petit will investigate how nanocarbon materials in aqueous solutions interact with their environment. These interactions have hardly been studied so far, but they are essential for developing new applications and being better able to assess risks.

It is very difficult to study nanocarbon materials in aqueous solutions experimentally, though. Spectrographic methods using X-ray light can provide information about the electrochemical and photochemical processes. Petit relies on specialised setups for this such as LiXEdrom at BESSY II that were developed at HZB specifically for these kinds of experiments. He intends to use infrared spectroscopy to determine the configuration of water molecules surrounding the nanoparticles. Petit also plans to carry out sequential laser-based pump-probe measurements in order to observe ultrafast electronic processes in the nanoparticles. The methods have already proven themselves in nanocarbon solid-state experiments, but their utilisation in studying nanocarbon in liquids is new, however.

“The Freigeist Fellowship makes it possible for me to research these problems comprehensively. Once we better understand the complex interactions between nanocarbon particles in an aqueous environment, we will be able to develop a new generation of carbon-based nanomaterials for different applications – from photocatalysis of solar fuels to medical applications”, says Petit. The Freigeist Fellowship is accompanied by funding of 805,000 EUR, of which 375,000 EUR is provided by HZB in-house resources and 430,000 EUR by the VolkswagenStiftung.

As a result, there are now two Freigeist Fellows on Aziz’ team. Dr. Annika Bande also received a Freigeist Fellowship last year and has since been working at the HZB Institute for Methods of Material Development headed by Aziz.


Further information on the Freigeist Fellowships: www.volkswagenstiftung.de/freigeist-fellowships.

arö

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.