New opportunities for CIGS solar cells

PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners.

PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners. © A. Kubatzki/HZB

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB.

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB. © A. Kubatzki/HZB

Dynamic CIGS solar cell technology workshop gives rise to optimism: experts predict higher efficiencies and lean production technologies

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB at HZB in Berlin-Adlershof from 29. to 30. April.  They reported new, exciting results, ranging from record module efficiencies and significant module manufacturing simplification to solid scientific understanding of the underlying atomic-scale physics and chemistry.

CIGS-thin film solar cells are based on compound semiconductors consisting of the elements Copper, Indium, Gallium and Selenium and Sulphur. They are the most efficient thin-film solar cell technology to date. PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners. “We have seen very remarkable improvements in CIGS technology over the past year and many exciting new industrial and academic results were presented at the workshop”, says Rutger Schlatmann, head of the institute PVcomB at the HZB, explicitly mentioning following examples:

•    A strong increase in world record cell efficiency to almost 22%, and a clear, scientifically based outlook towards 25% cells in the coming years.
•    World record module efficiencies well above 16%.
•    Restart of CIGS production capacity in Germany and upcoming remarkable expansion of production capacity worldwide.
•    Production process simplifications (e.g. reduction of number of process steps).
•    Very promising results in the field of wet processing, e.g. electrochemical deposition.
•    Improved process control achieving a remarkable 98% process yield.
•    Product development for very specific applications (large solar power plants with very low cost electrical power, aesthetic appearance and flexibility in design for BIPV).
“Summarizing the impressions of the workshop, there is a powerful community of CIGS technologists and academics. Many of them report rapid progress in development and there is an optimistic view on the successful growth of CIGS photovoltaics” Schlatmann concludes.

red/arö


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.