BESSY II is ready for user service

A view of what had been the practically empty segment at EMIL in the experimental hall; the beam tubes for EMIL are already being marked out on the brand-new flooring. Photo: Ingo M&uuml;ller/HZB<strong><br /></strong>

A view of what had been the practically empty segment at EMIL in the experimental hall; the beam tubes for EMIL are already being marked out on the brand-new flooring. Photo: Ingo Müller/HZB

BESSY II was shut down as scheduled from February 9th until the end of March for refurbishment and modernization. The accelerator is operational once again, and has been running since the beginning of April, beginning with beam scrubbing to increase the lifetime of the electrons in the storage ring and to improve operation. At the same time teams have been working on the calibration and commissioning of their instruments. BESSY II will be ready for user service once again on April 21 2015.

The new flooring shines - it desperately needed to be re-done in heavily worn areas. But that is just the most obvious update undertaken during this shutdown. At least five major projects were coordinated since the beginning of February. „Our best thanks to the staff, who worked overtime to get everything ready“, says Prof. Anke Kaysser-Pyzalla, scientific director of HZB, „now User Service can start again as planned.“

As a result BESSY II is now equipped with a state-of-art Personal Safety Interlock to ensure safe operation. “The interlock shuts off the machine immediately or brings it to a safe state if someone makes an error while in operation or opens a door to a restricted area”, explains Müller. The new interlock system is based on modern safety PLCs. These programmable logic controllers are certified and the operation of the entire system was inspected and accepted by the radiation safety officer.

Vacuum Sement rebuilt for EMIL

The EMIL laboratory has been added, therefore a vacuum segment in the storage ring needed to be completely re-built. "During this shutdown we also prepared the vacuum system needed for both undulators that have been designed by the Undulator-team specifically for EMIL", Christian Jung (Scientific-Technical Infrastructure II) explains. This is because energies of up to 10,000 eV will be needed for EMIL instead of just the normal 60 to 2000 eV for nominal BESSY II operations.

Modern RF amplifyers and a multipole wavelength shifter have been installed

The replacement of two out of the four klystron-based RF amplifiers, used to power the RF cavities was also very elaborate. They were replaced by newly designed Solid State RF amplifiers. The multipole wavelength shifter on the EDDI beamline, which was damaged last year, has now also been repaired and re-installed.

Dipole front-end systems will get new absorbers

“In addition, we installed new beam line absorbers on a quarter of the dipole front-end systems during this shutdown. That was necessary because we have a 300 mA beam current present at all times in the ring due to operating in top-up mode", Jung explains.

User service resumes April 21, but the next shutdown is already being planned. The work that began during the 2013 shutdown should be completed by the end of 2015. Still on the agenda: replacement of the last two “old” RF cavities in the machine with new RF cavities, installation of the two new undulators for EMIL, changeover of the remaining klystron-based RF amplifiers to Solid State technology as well as fitting new absorbers in the remaining dipole front-end systems.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.