Distinguished Lectures at HZB: Prof. Jürgen Janek will give talk about the Materials Research for "Next Generation" Batteries

Prof. Dr. Jürgen Janek, Universität Gießen

Prof. Dr. Jürgen Janek, Universität Gießen

The search for new and the development of improved electrochemical energy storage systems stimulates world-wide research efforts in both academia and industry. While impressive improvements and cost reductions are still to be expected for lithium ionbatteries (LIB) and are part of enormous industrial efforts, more fundamental research aims for the creation and understanding of completely new cell types.

In order to provide an up-to-date overview on recent developments, the current status of LIB will be briefly reviewed, before major trends in the study of new cell types will be discussed. Essentially, three types of potential "next generation"; batteries will be considered in more detail: (a) alkali metal/ sulfur batteries (e.g. Li/S8), (b) alkali metal/oxygen batteries (e. g. Li/O2) and (c) solid state batteries (SSB).

The lecture will focus on major materials challenges on the one hand and to mechanistic questions from the physicochemical point of view on the other hand. The lecture will help to better judge a dynamic research field by evaluating the true chances and risks of new cell types.

23.02.2015 16:00 o clock
Lecture Hall at Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin

Please note that for entering HZB premises a valid ID card/passport is required.

sz

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.