New in situ cell for investigating solid- and liquid-state samples and their interfaces under electrical voltage

Exploded view drawing of the electrochemical flow cell for soft x-ray absorption and emission spectroscopy. The membrane (yellow) is coated with a metal, serving as working electrode (WE) and that also serves as a support for the solid sample. Counter (CE) and reference electrode (RE) are placed in the liquid chamber. Tubes are attached to allow fast and easy liquid exchange and to prevent radiation damage. <br /><br />

Exploded view drawing of the electrochemical flow cell for soft x-ray absorption and emission spectroscopy. The membrane (yellow) is coated with a metal, serving as working electrode (WE) and that also serves as a support for the solid sample. Counter (CE) and reference electrode (RE) are placed in the liquid chamber. Tubes are attached to allow fast and easy liquid exchange and to prevent radiation damage.

© HZB

A team headed by Dr. Kathrin Aziz-Lange has developed a new in-situ cell for X-ray spectroscopy of fluid samples and their interfaces to solid bodies. What is special is the cell contains electrodes that can expose the sample to voltage during or between measurements. The resulting changes triggered in the electrical structure of the sample can be observed with the help of X-ray absorption and emission spectroscopy in real time.

Christoph Schwanke from the HZB Institute for Solar Fuels as well as Ronny Golnak and Dr. Jie Xiao from the HZB Institute for Methods of Material Development participated in the work.

“This new cell is interesting if you want to better understand the functioning of materials for catalytic processes, in electrolytic cells, or rechargeable batteries”, explains Kathrin Aziz-Lange. These kinds of materials play a large role in energy research, for instance in hydrogen generation through electrolytic splitting of water, in fuel cells, in dye-sensitised solar cells (DSSC) as well as in development of more efficient batteries.

The newly developed cell was presented in the scientific journal ,„Review of Scientific Instruments“ (5. November 2014, Vol. 85, 10).  first results have already been obtained, and it can also be used by visiting researchers.

 

"Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy," has been published online today, 5 November 2014, in Review of Scientific Instruments (Vol.85, Issue 10).

DOI: 10.1063/1.4899063

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.