A new cluster tool for EMIL

A cluster tool for the research on new classes of materials and device structures for photovoltaic and photocatalysis applications. (Source: Altatech)

A cluster tool for the research on new classes of materials and device structures for photovoltaic and photocatalysis applications. (Source: Altatech)

The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and Altatech, a subsidiary of Soitec, have launched a collaborative partnership to research and develop materials for the next generation of high-efficiency solar cells, including new classes of materials and innovative device structures for photovoltaic and photocatalysis applications.

As part of the organizations’ joint effort, Altatech will install a new single-substrate multi-chamber solution, an AltaCVD system, at HZB’s newly constructed Energy Materials Insitu Laboratory (EMIL) at the synchrotron light source BESSY II facility in Berlin. Together, HZB and Altatech will investigate new materials-deposition processes, functional interfaces and device structures for solar energy conversion and storage.

Altatech’s new AltaCVD system will be used in HZB’s EMIL lab to deposit amorphous silicon (alloys), transparent conductive oxides and ultra-thin dielectrics used in fabricating next generation solar energy devices. The CVD system will be hosted by the new EMIL building, adjacent to HZB´s third-generation storage ring BESSY II. The cluster tool will be directly connected to a state-of-the-art X-ray analytical end-station, which accesses a dedicated beam line from BESSY II. The partner organizations will conduct atomic-layer deposition, plasmaenhanced chemical vapor deposition and physical vapor deposition on substrates ranging from small research samples up to fully industry-compatible six-inch wafers and use EMIL’s outstanding analytical capabilities to analyze material and interface properties in between successive processing steps.

“EMIL aims at exploring materials for high-efficiency photovoltaic cells and new catalytic processes for future solar energy generation and storage concepts. We will develop and characterize these materials with basic energy research methods, but prepare them with industrially related methods to ensure rapid industrial implementation,” says Prof. Klaus Lips, head of the EMIL project and HZB’s Advanced Analytics Group. “The AltaCVD system provides us with a unique combination of a highly flexible design in terms of temperatures, precursors, plasma cleaning, etc. with a fully industrial-compatible deposition technology.”

“This order reinforces the AltaCVD system’s leadership position in advanced materialdeposition applications,” says Jean-Luc Delcarri, general manager of Soitec’s Altatech subsidiary. “Our collaboration with the Helmholtz-Zentrum Berlin allows us to apply our advanced material-deposition technology at a state-of-the-art synchrotron radiation facility. Together, we are opening the door to a new era in advanced renewable-energy development that will help researchers to tackle the challenges of future world energy needs.”

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.