Better insight into molecular interactions

This sketch demonstrates the principle of measurement which enables to address  atom-specific and state-dependent emission of photons. With the help of first principles theory the spectral features can be associated with molecular orbitals.

This sketch demonstrates the principle of measurement which enables to address atom-specific and state-dependent emission of photons. With the help of first principles theory the spectral features can be associated with molecular orbitals. © Uni Rostock

How exactly atoms and molecules in biochemical solutions or at solid-liquid interfaces do interact, is a question of great importance. Answers will provide insights at processes in catalysts, smart functional materials and even physiological processes in the body, which are essential for health. Until now, scientists could have a look at these interactions by methods of spectroscopy, but it was hard to distinguish the many different interactions, which take place simultaneously.

 “Basically we are looking at how atoms and molecules interact in biochemical materials in solution”, says Professor Dr. Emad Flear Aziz, leader of the Young Investigator Group for Functional Materials in Solution at the HZB and Professor at Freie Universität Berlin. Their now published work is based on a discovery by Aziz’ team made three years before: They then analyzed samples with x-ray spectroscopy and observed the disappearance of photons at some specific photon energy. These results have been replicated by other teams worldwide. To explain this effect, Aziz and colleagues proposed a “dark channel mechanism”, which should provide information about binding processes and interactions between atoms or molecules. This explanation stirred a big debate among scientists.

Now they have gathered arms with theoretical physicists around Professor Oliver Kühn from the University of Rostock in order to get a coherent picture:  Aziz’ team sharpened the experimental methods further using a new approach to high resolution spectroscopy. In order to understand, how the spectral findings are linked to binding and structural processes inside the sample, Oliver Kühn and his postdoc Sergey Bokarev provided a theoretical tool, based on ab initio calculations of energy levels inside the molecules.  “We can map all electronic states in the systems we probe, and we can distinguish those which are involved in building bonds with neighbors from those which are not involved”, Aziz explains. Metaphorically speaking: if the interacting molecules produce a sort of party chatter, the scientists are now able to listen to specific conversations. They are convinced that these new tools will bring deeper insights into the chemistry of life.

To the publication in PRL: State-Dependent Electron Delocalization Dynamics at the Solute-Solvent Interface: Soft-X-Ray Absorption Spectroscopy and Ab Initio Calculations
DOI:10.1103/PhysRevLett.111.083002

More about the "Dark Channel Mechanism" in the press release 2010


arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.