Groundbreaking for EMIL

Burial of the time capsule was part of the groundbreaking ceremony. Seen here are Klaus Lips, Anke Kaysser-Pyzalla, Birgit Schröder-Smeibidl, Markus Hammes, Bernd Rech, Axel Knop-Gericke (CAT project leader of the MPG's Fritz Haber Institute) and Thomas Frederking. Photo: Andreas Kubatzki/HZB

Burial of the time capsule was part of the groundbreaking ceremony. Seen here are Klaus Lips, Anke Kaysser-Pyzalla, Birgit Schröder-Smeibidl, Markus Hammes, Bernd Rech, Axel Knop-Gericke (CAT project leader of the MPG's Fritz Haber Institute) and Thomas Frederking. Photo: Andreas Kubatzki/HZB

In addition to the August 5, 2013 daily paper and the EMIL blueprints, archaeologists of the future will also discover samples of thin film solar cells from the year 2013 inside the time capsule. Photo: Andreas Kubatzki/HZB

In addition to the August 5, 2013 daily paper and the EMIL blueprints, archaeologists of the future will also discover samples of thin film solar cells from the year 2013 inside the time capsule. Photo: Andreas Kubatzki/HZB

On Monday, August 5, 2013, a festive groundbreaking ceremony was the official  signal for the start of construction of the new BESSY II research lab EMIL. The new cutting-edge solar energy and catalysis research preparation and analysis lab "Energy Materials In-Situ Laboratory Berlin" will be a direct BESSY II add-on. The joint project by the HZB and the Max Planck Society provides a one-of-a-kind infrastructure for the interdisciplinary and industry compatible development of new materials and technologies to facilitate the energy transition. This includes new material systems for solar modules as well as storage solutions for which new kinds of catalysts are warranted.

"Construction of EMIL is a sure-fire sign of the HZB's commitment to expanding our energy research focus. These kinds of unparalleled infrastructures are an important prerequisite for energy technology progress," said Prof. Anke-Rita Kaysser-Pyzalla, the HZB's scientific director. She took the occasion to thank all those involved at the HZB,  the project executing organisation Jülich, the funding bodies as well as the various agencies for their formidable commitment to preparing and supporting the building project.

In his speech, the head of the project, Prof. Klaus Lips, made reference to the young hero in Erich Kästner's children's classic "Emil and the detectives," who personifies the new lab's mission. "Just as Emil went out looking for allies, here, too, it's all about putting together a strong team and figuring out solar cell losses using scientific detective work," Lips explained. "Beginning in 2015, we will be able to use EMIL for analysing the different processes that take place at the interfaces during production of thin film solar cells or catalysts under real-life conditions and even use depth-resolved observation." 

Next, head architect Markus Hammes commented on the building's design: "We made a conscious effort to model the EMIL building on the storage ring's form language so EMIL will have the appearance of a pulled-out drawer as an integral part of the BESSY II building, albeit with its own separate function."

Lastly, Dr. Gerd Reichardt, EMIL's technology project manager, stuffed a time capsule made from solid stainless steel with a copy of Erich Kästner's novel, the daily paper, and the building blueprints, as well as with several samples of cutting-edge thin film photovoltaics, and then buried it in the ground underneath the construction site. The topping out ceremony has been scheduled for end-of-year 2013 to ensure the labs are up and running by late 2014.

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.