Discovery of how a key enzyme of the spliceosome exerts its controlling function
To sustain life, processes in biological cells have to be strictly controlled both in time and in space. By using the MX-Beamline of synchrotron radiation source BESSY II research workers at the Max Planck Institute for Biophysical Chemistry in Göttingen and the Free University of Berlin have elucidated a previously unknown mechanism that regulates one of the essential processes accompanying gene expression in higher organisms. In humans, errors in this control mechanism can lead to blindness. This discovery has been published in the renowned scientific journal Science (23th may 2013).
Traudy Wandersleben and Karine Santos from the research group of Markus Wahl in Berlin determined the atomic structure of the Brr2 protein in contact with the relevant regulatory portion of Prp8. “To do this we used X ray crystallography,” states Markus Wahl. “There are excellent facilities for this kind of research at the BESSY II synchrotrons at the Helmholtz Centre in Berlin, where the necessary specialised instrumentation is available”.
Please find here the complete press release published by Freie Universität Berlin.
Original paper
Mozaffari Jovin, S., Wandersleben, T., Santos, K.F., Will, C.L., Lührmann, R., Wahl, M.C. (2013) Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science, 23 Mai 2013. DOI: ...
Further publications on the subject
[1] Santos, K. F., Mozaffari Jovin, S., Weber, G., Pena, V., Lührmann, R., Wahl, M. C. (2012) Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc. Natl. Acad. Sci. USA 109, 17418-17423.
[2] Mozaffari Jovin, S., Santos, K. F., Hsiao, H.-H., Will, C. L., Urlaub, H., Wahl, M. C., Lührmann, R. (2012) The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 26, 2422-2434.
Further information::
Homepage of MPI-group Göttingen
Homepage of FU-group Berlin