Synchrotronlicht in bisher unerreichter Qualität: „Wichtiger Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser“

Dr. Johannes Bahrdt

Dr. Johannes Bahrdt

 

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben in Kooperation mit der schwedischen Universität Lund Synchrotronlicht von bisher unerreichter Qualität erzeugt: Weltweit erstmalig gelang es ihnen, kohärente Lichtpulse im extremen vakuum-ultravioletten Spektralbereich zu generieren (66nm), die nur 200 Femtosekunden lang sind und die eine variable Polarisation aufweisen. „Wir haben damit einen wichtigen Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser vollzogen“, sagt Dr. Johannes Bahrdt, Leiter der HZB-Abteilung „Undulatoren“.

Das von Johannes Bahrdt und seinen Kollegen realisierte Prinzip: Die wünschenswerten Eigenschaften eines kommerziellen Lasers langer Wellenlänge – des sogenannten Seed-Lasers – werden auf einen Lichtpuls im vakuum-ultravioletten Spektralbereich übertragen, wo es Lichtquellen mit gleichen Eigenschaften nicht gibt. Dafür wird der Elektronenstrahl des Injektor-Beschleunigers an der Synchrotronstrahlungsquelle MAX-lab in Lund, Schweden, in einer speziellen Magnetstruktur, dem Modulator, mit dem Seed-Laser überlagert. Seed-Laser und Elektronenstrahl treten im Modulator in Wechselwirkung, wodurch die Elektronenpakete verändert werden. Sie erfahren eine räumlich periodische Energiemodulation auf der Skala der Wellenlänge des Seed-Lasers. Anschließend durchfliegen die Pakete eine Schikane, eine dispersive Strecke, in der die Energiemodulation in eine Dichte-Modulation umgewandelt wird.

Die Elektronenpakete weisen danach in ihrem Inneren eine Mikrostruktur auf und werden in die nächste Magnetstruktur geschickt. Dieser so genannte Radiator nutzt die mikrostrukturierten Elektronenpakete und emittiert kohärentes Licht auf der Wellenlänge oder auf einer höheren Harmonischen der Mikrostrukturierung. Eine neue Klasse von Freien Elektronen Lasern (FELs), die sogenannten HGHG-FELs (z.B. der im Bau befindliche FEL FERMI in Trieste, Italien), beruhen auf diesem Prinzip und gelten wegen ihrer guten Strahleigenschaften als FELs der nächsten Generation. „Unser Radiator bietet durch seine spezielle Magnetstruktur die Möglichkeit, den Polarisationszustand des Lichtes frei zu definieren. Damit lässt sich sowohl linear polarisiertes Licht unterschiedlicher Orientierung als auch zirkular polarisiertes Licht mit frei wählbarem Drehsinn einstellen“, erklärt Johannes Bahrdt: „Uns ist es erstmals gelungen, mit dieser Methode an einem Linearbeschleuniger (Linac) zirkulare Strahlung zu erzeugen.“ Dies ist ein wichtiger Schritt bei der Weiterentwicklung von Linac-basierten Freie-Elektronen-Lasern, die bisher nur linear polarisiertes Licht produzieren.

Das Experiment wurde im Rahmen des EuroFEL Design Project aufgebaut und wird in einer Kollaboration von HZB und MAX-lab betrieben. Ziel ist es, FELs hinsichtlich Zeitverhalten, Kohärenz, Polarisation und spektraler Reinheit zu optimieren sowie die dafür notwendige Einzel-Puls-Diagnostik zu entwickeln. Die Undulatorabteilung des HZB hat dafür das komplette Undulatorsystem entwickelt und installiert sowie Glasfasersysteme zur Elektronenstrahldiagnostik bereitgestellt. Das Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung hat eine Terahertz-Detektion zur Optimierung der Bunchkompression beigesteuert. Wissenschaftler aus beiden HZB-Einheiten waren in den letzten Jahren während der Inbetriebnahmezeiten der Anlage in Schweden.

HS


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.