Sundermann, M.; Strigari, F.; Willers, T.; Winkler, H.; Prokofiev, A.; Ablett, J.M.; Rueff, J.-P.; Schmitz, D.; Weschke, E.; Moretti, M.; Al-Zein, A.; Tanaka, A.; Haverkort, M.W.; Kasinathan, D.; Tjeng, L.H.; Paschen, S.; Severing, A.: CeRu4Sn6: a strongly correlated material with nontrivial topology. Scientific Reports 5 (2015), p. 17937/1-9
10.1038/srep17937
Open Accesn Version
Abstract:
Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or mpurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.