Battery research: visualisation of aging processes operando

Here is a selection of 3D element distributions of individual elements after 10,000 charge cycles, i.e. post mortem: On the top left, crystallised electrolyte can be seen, iron in the metal contacts and copper from the back contact have remained stable, while manganese from the NMC cathode (upper light blue stripe) has partially deposited on the bottom of the anode. The publication contains the full explanation.

Here is a selection of 3D element distributions of individual elements after 10,000 charge cycles, i.e. post mortem: On the top left, crystallised electrolyte can be seen, iron in the metal contacts and copper from the back contact have remained stable, while manganese from the NMC cathode (upper light blue stripe) has partially deposited on the bottom of the anode. The publication contains the full explanation. © BLiX/TU Berlin/HZB

<p class="x_MsoNormal">The setup in the BLiX laboratory allows to analyse the composition of the individual layers of a button cell fully automatically over weeks operando using confocal X-ray fluorescence spectroscopy.</p>
<p class="x_MsoNormal">&nbsp;

The setup in the BLiX laboratory allows to analyse the composition of the individual layers of a button cell fully automatically over weeks operando using confocal X-ray fluorescence spectroscopy.

  © BLiX/TU Berlin/HZB

Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.

 

Lithium-ion batteries have become increasingly better. The combination of layered nickel-manganese-cobalt oxides (NMC) with a graphite electrode (anode) has been well established as the cathode material in button cells and has been continuously improved. However, even the best batteries do not last forever; they 'age' and lose capacity over time.

‘A lot happens at the interfaces between the anode, separator and cathode while a battery is charging or discharging,’ explains Ioanna Mantouvalou, physicist at HZB and first author of the study. Typically, these changes are only studied after the battery has been disassembled, i.e. ex situ and at a specific point in the cycling process. But there is now another way: in situ and operando experiments allow to look inside the battery while the processes are taking place, using X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) in a so-called confocal geometry. This geometry permits 3D scanning of a sample with depth resolutions down to 10 µm. Such experimental setups are already possible at the synchrotron radiation source BESSY II. However, the measurement time at BESSY II is limited, so batteries cannot be studied over their entire lifetime.

Ioanna Mantouvalou therefore uses a confocal micro X-ray fluorescence spectrometer at BLiX, which can analyse samples fully automatically over long periods of time. ‘The confocal setup allows us to distinguish the individual layers from the NMC cathode to the back contact and to study their elemental composition. This gives us spatially resolved insights into the operation without changing the layer stack. Non-destructive! Quantitative, under operating conditions, i.e. operando,’ says Mantouvalou.

The researchers analysed a lithium button cell on the BLiX instrument for several weeks and over 10,000 charge cycles, providing data on the degradation of the NMC electrode over time. In addition, the sample was examined at the new microfocus beamline (MiFO) in the PTB laboratory at BESSY II.

The study shows that during the first three weeks, manganese in particular dissolves from the NMC cathode and migrates to the carbon anode. This process takes about 200 cycles. After that, the compound increasingly dissolves in the intermediate layers, which stops further reactions and processes. ‘We urgently need such quantitative results to further improve batteries,’ says Mantouvalou. The device in the BLiX laboratory can also be used for experiments on other materials.

arö

  • Copy link

You might also be interested in

  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • An elegant method for the detection of single spins using photovoltage
    Science Highlight
    14.04.2025
    An elegant method for the detection of single spins using photovoltage
    Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.