New instrument at BESSY II: The OÆSE endstation in EMIL
The new end station was set up in the EMIL laboratory. © R. Garcia-Diez /HZB
Scheme of the endstation, including the sample environment, the analysis chamber and the operando beamline section. © HZB
A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
Solar cells, catalysts, and batteries are composed of so-called energy materials, i.e., materials that either convert or store energy. Their functionality is based on complex chemical or physical processes. In order to improve their functionality, it is crucially required to understand those processes, ideally while they are taking place, i.e. by in situ and operando studies. A new experimental station enabling corresponding experiments is now available at the Energy Materials In-situ Laboratory Berlin (EMIL) located at the synchrotron facility BESSY II.
The “Operando Absorption and Emission Spectroscopy on EMIL” (OÆSE) provides detailed insights into the electronic and chemical structures of materials and interfaces and their changes during critical (electro)chemical processes via X-ray absorption (XAS) and emission (XES) spectroscopy .
At the heart of the OÆSE endstation is a modular and flexible in situ/operando sample environment, specially tailored to tackle the specific research questions required for each energy material, which design ensures easy adaptation to different experiments.
To demonstrate the capabilities of the OÆSE endstation, the team led by Raul Garcia-Diez and Marcus Bär studied in situ the electrochemical deposition of copper from an aqueous CuSO4 electrolyte using combined soft and hard X-ray absorption spectroscopy exploiting the two-color beamline of EMIL. The case study shows that the new endstation offers valuable insights into dynamic electrochemical processes and thus enables a better understanding of complex electrochemical systems.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=29966;sprache=en
- Copy link
-
Green hydrogen: A cage structured material transforms into a performant catalyst
Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
-
An elegant method for the detection of single spins using photovoltage
Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.
-
Solar cells on moon glass for a future base on the moon
Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.