An elegant method for the detection of single spins using photovoltage

The green laser excites charge carriers in the NV centres, which are then captured by surface states. The scanning tip moves over the surface and measures a potential difference around a NV centre. The spin states of the NV centres can be manipulated using microwaves.

The green laser excites charge carriers in the NV centres, which are then captured by surface states. The scanning tip moves over the surface and measures a potential difference around a NV centre. The spin states of the NV centres can be manipulated using microwaves. © Martin Künsting / HZB

Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.

Defects in solids are often undesirable, but they can also provide wonderful new opportunities, for example in diamonds: Here, nitrogen vacancy centres (NV centres) can be introduced whose spin states can be manipulated with microwaves. The information from a single spin can then be read out using light. This makes NV-doped diamonds suitable not only as highly sensitive sensors, but also as qubits for quantum computers.

Up to now: optical detection

However, to determine the state of each individual spin, the photons emitted from the colour centre (carrying the spin) must be measured. Since only single photons are emitted when spins flip, this signal is very weak, leading to a complex experimental set-up for the detection.

Now: photovoltage measured by KPFM

A team at HZB has now presented a novel method to solve this problem. ‘The idea was that such defect centres not only possess a spin state, but also electrical charge,’ says Dr Boris Naydenov. To probe these charges, they modified a variant of atomic force microscopy known as Kelvin probe force microscopy (KPFM): in this process, a laser excites the NV centres, generating free charge carriers that are captured by surface states and thus produce a measurable voltage around an NV centre.

Capturing spin dynamics

‘The photovoltage depends on the electron spin state of the NV centre, and so we can actually read out the individual spin,' says Sergei Trofimov, who carried out the measurements as part of his PhD project. Moreover, with the new method, it is even possible to capture the spin dynamics by coherently manipulating the spin states using microwave excitation.

Outlook: tiny diamond based devices

‘This would open the way to the development of really tiny and compact diamond-based devices, since all that is needed are suitable contacts instead of complex microscopic optics and single-photon detectors,’ says Prof. Klaus Lips, head of the Spins in Energy Conversion and Quantum Information Science department. ‘The newly developed readout method could also be used in other solid-state physics systems where electron spin resonance of spin defects has been observed,’ Lips estimates.

arö

  • Copy link

You might also be interested in

  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • Accelerator Physics: First electron beam in SEALab
    News
    03.04.2025
    Accelerator Physics: First electron beam in SEALab
    The SEALab team at HZB has achieved a world first by generating an electron beam from a multi-alkali (Na-K-Sb) photocathode and accelerating it to relativistic energies in a superconducting radiofrequency accelerator (SRF photoinjector). This is a real breakthrough and opens up new options for accelerator physics.
  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.