Leading Sasol scientist appointed as Industrial Research Fellow at HZB

Dr. Denzil Moodley, a leading scientist in the field of Fischer-Tropsch at Sasol Research and Technology, is being appointed as Industrial Research Fellow at HZB. Moodley will contribute his expertise at HZB with the aim of accelerating the innovation cycle for sustainable fuel technologies in aviation.

Dr. Denzil Moodley, a leading scientist in the field of Fischer-Tropsch at Sasol Research and Technology, is being appointed as Industrial Research Fellow at HZB. Moodley will contribute his expertise at HZB with the aim of accelerating the innovation cycle for sustainable fuel technologies in aviation. © Sasol

Within the CARE-O-SENE project, HZB is cooperating with the South African company Sasol on innovative catalysts for sustainable aviation fuels (SAF). Now, the collaboration is intensifying: Dr. Denzil Moodley, a leading scientist in the field of Fischer-Tropsch at Sasol Research and Technology, is being appointed as Industrial Research Fellow at HZB. Moodley will contribute his expertise at HZB with the aim of accelerating the innovation cycle for sustainable fuel technologies.

With the appointment of Dr. Denzil Moodley as Industrial Research Fellow, Helmholtz-Zentrum Berlin (HZB) and Sasol are strengthening their partnership, established with the flagship CARE-O-SENE project in 2022. The fellowship aims to deepen existing technical working relationships within the project but is also intended to extend to other research areas.

This appointment represents a strategic advancement in the ongoing partnership between HZB and Sasol, fostering closer collaboration to accelerate the innovation cycle for sustainable fuel technologies. Dr. Denzil Moodley, Senior Scientist in Fischer-Tropsch at Sasol Research and Technology, brings a wealth of industrial knowledge to the collaboration and is expected to catalyze synergies between academic discoveries and industrial applications. Dr Theo Mudzunga, Vice President at Research and Technology at Sasol, remarked, “Partnerships between industry and research are essential for driving innovation at the pace and scale needed to address global challenges. By collaborating with HZB, we can combine cutting-edge scientific research and tools with practical industrial insights, aiming to accelerate the development of sustainable technologies that will have a tangible impact”.

Prof. Bernd Rech, HZB’s Scientific Director, added, “By appointing Dr. Denzil Moodley as Industrial Research Fellow, HZB reaffirms its commitment to fostering impactful partnerships that bridge the gap between research and industry. This initiative demonstrates our dedication to driving transformative progress and paving the way for a more sustainable future.”

This fellowship builds upon the success of the CARE-O-SENE initiative, jointly led by Sasol and HZB, involving several other German and South African partners. CARE-O-SENE is dedicated to developing highly efficient Fischer-Tropsch catalysts for large-scale SAF production and has already delivered excellent results. The project has become a role model for academic-industrial R&D collaborations, advancing innovation and sustainability within the aviation sector.

Dr. Moodley emphasized the significance of this partnership, stating, “It is critical that we have closer collaboration between industry and research institutes to address sustainability challenges, and this fellowship enables that. By combining our strengths, we can not only advance the state of science but also the scale-up of sustainable technologies. The fellowship also involves the development and mentoring of young scientific talent, which I’m very excited about. Additionally, this is a platform to foster broader German- South African scientific networking”

Through initiatives like this fellowship, HZB and Sasol, play a part in advancing sustainable energy technologies, addressing the challenges of the energy transition, and supporting global efforts to achieve carbon neutrality.

red.

  • Copy link

You might also be interested in

  • Perovskite solar cells: thermal stress is the key to their long term stability
    Science Highlight
    21.02.2025
    Perovskite solar cells: thermal stress is the key to their long term stability
    Perovskite solar cells are highly efficient and low cost in production. However, they still lack stability over the decades under real weather conditions. An international research collaboration led by Prof. Antonio Abate has now published a perspective on this topic in the journal Nature Reviews Materials. They explored the effects of multiple thermal cycles on microstructures and interactions between different layers of perovskite solar cells. They conclude that thermal stress is the decisive factor in the degradation of metal-halide perovskites. Based on this, they derive the most promising strategies to increase the long-term stability of perovskite solar cells.
  • BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    Science Highlight
    20.02.2025
    BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    In a small manganese oxide cluster, teams from HZB and HU Berlin have discovered a particularly exciting compound: two high spin manganese centres in two very different oxidation states and. This complex is the simplest model of a catalyst that occurs as a slightly larger cluster in natural photosynthesis, where it enables the formation of molecular oxygen. The discovery is considered an important step towards a complete understanding of photosynthesis.
  • HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells
    News
    04.02.2025
    HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells
    Combining two semiconductor thin films into a tandem solar cell can achieve high efficiencies with a minimal environmental footprint. Teams from HZB and Humboldt University Berlin have now presented a CIGS-perovskite tandem cell that sets a new world record with an efficiency of 24.6%, certified by the independent Fraunhofer Institute for Solar Energy Systems.