Lithium-sulphur pouch cells investigated at BESSY II

Photomontage: the diagonal line divides the image into a photo of the lithium-sulfur pouch cell (left) and the corresponding X-ray image (right) during the multimodal measurement with force sensor (golden) and temperature sensors. The perforated honeycomb structure of the current collector can be clearly seen on the X-ray image. This new design approach reduces the weight of the cell without compromising performance.

Photomontage: the diagonal line divides the image into a photo of the lithium-sulfur pouch cell (left) and the corresponding X-ray image (right) during the multimodal measurement with force sensor (golden) and temperature sensors. The perforated honeycomb structure of the current collector can be clearly seen on the X-ray image. This new design approach reduces the weight of the cell without compromising performance. © R. Müller/ HZB

A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.

 

Lithium-sulphur batteries have a number of advantages over conventional lithium batteries: they use the abundant raw material sulphur, do not require the critical elements cobalt or nickel, and can achieve extremely high specific energy densities. Prototype cells are already achieving up to 500 Wh/kg, almost twice as much as current lithium-ion batteries.

Degradation processes examined

However, lithium-sulphur batteries have so far been much more susceptible to degradation processes: during charging and discharging, dissolved polysulphides and sulphur phases form on the lithium electrode, gradually reducing the performance and lifetime of the battery. ‘Our research aims to elucidate these processes in order to improve this type of battery,’ says HZB physicist Dr. Sebastian Risse, who leads a team at HZB working on operando analysis of batteries.

The pouch cell lab at HZB

He is focusing on pouch cells, a battery format widely used in industry. HZB's Institute for Electrochemical Energy Storage (CE-IEES), headed by Prof. Yan Lu, has therefore set up a laboratory specialising in the production of lithium-sulphur batteries in the required pocket format. Here, scientists can produce and investigate a wide variety of lithium-sulphur pouch cells. As part of the BMBF-funded 'SkaLiS' project, coordinated by Sebastian Risse, a team from the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has now published a comprehensive study of lithium-sulphur pouch cells in the prestigious journal Advanced Energy Materials.

Multimodal setup

The battery cells were studied in a setup developed at HZB using various methods such as impedance spectroscopy, temperature distribution, force measurement and X-ray imaging (synchrotron and laboratory source) during charging and discharging. For the first time, we were able to observe and document both the formation of lithium dendrites and the dissolution and formation of sulphur crystallites during multi-layer battery operation,' says Dr Rafael Müller, HZB chemist and first author of the study.

Phase-contrast radiography at BESSY II

In particular, phase-contrast radiography with coherent synchrotron light at the BAM beamline at BESSY II allowed us to follow the morphology of the only weakly absorbing lithium metal and to correlate it with other measurement data, giving us a comprehensive picture. X-ray analyses in the imaging laboratory at HZB, carried out in collaboration with the imaging group of Dr Ingo Manke, also allowed the formation of strongly absorbing sulphur crystals to be analysed during battery operation.

Outlook: High-energy battery systems

‘Our results bridge the gap between basic research and technology transfer, and in particular allow conclusions to be drawn about the scalability of this battery technology and the further development of high-energy battery systems,’ says Risse. Among other things, the team showed that a new design approach by the IWS Dresden is promising: a perforated and thus significantly lighter cathode current collector does not impair the performance of the cell.

The results of this study will help to optimise the performance and lifetime of lithium-sulphur batteries, so that this promising battery type can meet the requirements of mobile and stationary energy storage systems.

red/arö

  • Copy link

You might also be interested in

  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • An elegant method for the detection of single spins using photovoltage
    Science Highlight
    14.04.2025
    An elegant method for the detection of single spins using photovoltage
    Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.