Photovoltaic living lab reaches the 100 Megawatt-hour mark

Blick auf die Solarfassade des Reallabors.

Blick auf die Solarfassade des Reallabors. © HZB

About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

Solar facades offer untapped potential for generating clean electricity. How much they actually deliver and which environmental factors play a role are being studied at HZB's real laboratory. The facade elements installed there have now reached the 100-megawatt-hour mark.

This amount of energy is enough to supply a four-person household in Germany with clean electricity for 30 years. At HZB, the electricity generated by the laboratory’s solar facade is used entirely on-site, which makes the facility particularly economical. According to initial estimates, the additional costs compared to a conventional facade have amortized after 18 years.

What is the Living Lab?

It is a research building on the BESSY II location in Berlin-Adlershof equipped with a photovoltaic facade. A total of 360 frameless, blue-coated modules were installed on the south, west, and north facades of the building. Particular emphasis was placed on ensuring the solar facade elements are aesthetically pleasing.

The living laboratory is equipped with 120 measuring points and sensors for monitoring among others temperature, solar radiation and ventilation. This allows the behavior of the solar modules and the entire PV facade system to be evaluated under different seasonal and weather conditions over a long period.

Findings contribute to the building-integrated photovoltaics advisory service

These insights directly contribute to advisory services, benefiting society as a whole. HZB operates the independent advisory service for building-integrated photovoltaics (BAIP). Experts provide advice to architects, builders and urban planners on technologies, products, design options, technical feasibility, and legal frameworks.

 

sz

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.