SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer

Michele Segantini demonstrates the compact size and the portability of one of the EPRoC-Sensor with a permanent magnet.

Michele Segantini demonstrates the compact size and the portability of one of the EPRoC-Sensor with a permanent magnet. © Luca Segantini

The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.

When food goes bad, highly reactive molecules are produced, so called free radicals. The food industry has to go to great lengths to detect these molecules, either with chemical methods or via the only direct method, called electron paramagnetic resonance (EPR). But conventional EPR machines use electromagnets which do not allow battery operation and are expensive to buy and operate.

EPR-on-a-chip sensor

The new start-up company SpinMagIC now offers an EPR sensor that fits on a small chip. “We will produce small, portable and affordable EPR devices based on the combination of a microchip and permanent magnets that can be tailored to the customer's needs," explains physicist Michele Segantini (HZB), who is about to complete his PhD in Prof. Klaus Lips' department. In addition to Segantini, the founding team includes electrical engineer Anh Chu, physicist Belal Alnajjar, both at the University of Stuttgart in the team of Professor Jens Anders, and economist Jakob Fitschen.

The development of the EPRoC goes back to an idea by Klaus Lips (HZB) and Jens Anders (University of Stuttgart), which won the HZB Technology Transfer Award in 2019. Further development was then funded by the German Federal Ministry for Education and Research BMBF. “A lot has happened since then, so that we can now plan a spin off company”, says Segantini. While the team at the University of Stuttgart optimised the 'hardware', Segantini investigated where this invention could be used in the market.

“We see a huge potential for applications, initially mainly in food production," says Segantini. During his PhD, he contacted a wide range of industries and identified olive oil producers and breweries as pilot customers. Until now, these companies have tested their products using elaborate chemical methods, which produce relevant amounts of toxic waste. "EPRoC is not only much more sensitive, it is also less time-consuming, so samples can be analysed repeatedly throughout the process. This provides additional insights that can be used to optimise production processes to extend the shelf-life and oxidative resistance of the products”, Segantini points out.

In the future, the founders plan to adapt their product also to other areas of application, such as medical diagnostics, drug development, semiconductor technology and battery monitoring.

arö

  • Copy link

You might also be interested in

  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Catalyst Activation and Degradation in Hydrous Iridium Oxides
    Science Highlight
    10.12.2024
    Catalyst Activation and Degradation in Hydrous Iridium Oxides
    The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.
  • Two Humboldt-Fellows join HZB
    News
    09.12.2024
    Two Humboldt-Fellows join HZB
    In 2024, two young scientists joined HZB as Humboldt Fellows. Kazuki Morita joined Prof. Antonio Abate's group and brings his expertise in modelling and data analysis to solar energy research. Qingping Wu is an expert in battery research and works with Prof. Yan Lu on high energy density lithium metal batteries.