All BESSY II instruments reconnected to the network

© HZB / D. Laubner

Thirteen months ago, HZB fell victim to a criminal cyberattack that also took BESSY II light source and the instruments in the experimental hall out of operation. BESSY II was up and running again after just three weeks and the instruments were gradually put back into operation. Now HZB can report some good news: All experimental stations are again integrated into the new IT networks and can record data.

In a task force led by Andreas Jankowiak and Jens Viefhaus, a team led by Ruslan Ovsyannikov succeeded in implementing a new IT infrastructure and a resilient network architecture. This project is now to be firmly established and perpetuated at HZB. The aim is to achieve the full functionality of the BESSY-II user service, to establish new possibilities for remote experiments and better data management.

The project also benefits from the successes of an international cooperation that is developing a new basis for experimental data management at light sources and small labs called Bluesky. With Bluesky, a new type of experimental data acquisition system is being introduced throughout BESSY II (under the leadership of HZB employee William Smith). It is already in operation at several BESSY beamlines. The introduction of Bluesky at BESSY II is a milestone and has attracted much attention in the scientific community. Several European accelerators are interested in the novel data control system.

HZB is also participating in the Helmholtz project ROCK-IT (Remote, Operando Controlled, Knowledge-driven, and IT-based) to meet the future challenges of data management and the IT structures of large-scale scientific research facilities. The aim is to develop all necessary tools for the automation and remote access of in-situ and operando experiments at synchrotrons. Simplified access to the experiments is a central concern of the user community.

 

 

Roland Müller (red)


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.