New Method for Absorption Correction to Improve Dental Fillings

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth.

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth. © Leona Bauer (TU Berlin/HZB)

A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.

 

"We can now conduct more accurate measurements," says Ioanna Mantouvalou. "The absorption correction with micro-CT and XAS takes into account how strongly different materials absorb X-rays." This has been made possible through a combination of laboratory infrastructures at BAM (Federal Institute for Materials Research and Testing) and the HZB SyncLab laboratory in combination with the BESSY II synchrotron light source. BESSY II provided tunable X-rays over a wide energy range (200 eV to 32 keV) necessary for detailed compositional analysis. The micro-CT and confocal micro-XRF investigations were then facilitated using laboratory setups that utilize X-ray tubes as sources.

One of the materials investigated by Mantouvalou's team is dentin—a mineralized tissue that makes up most of the tooth, lies beneath the enamel, and plays a crucial role in transmitting sensations such as cold and heat. Its analysis is important for dentistry because, with dental fillings, elements often diffuse from the filling material into the dentin. "Our results enable detailed studies of such diffusion processes," says Leona Bauer, a doctoral student at HZB and TU Berlin and the study's first author. They are important for improving the durability and biocompatibility of dental fillings and reducing the risk of secondary caries and other dental problems.

In addition to investigating materials for dentistry, the method offers applications in other areas where precise 3D elemental distributions are required. These include the analysis of biological tissues, the investigation of catalyst materials, and the study of materials in environmental science. The versatility of the measurement method could thus have a positive impact on various research fields.

HS

  • Copy link

You might also be interested in

  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    13.12.2024
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    This year, the Friends of Helmholtz-Zentrum Berlin (Freundeskreis des HZB e. V.) awarded the Ernst Eckhard Koch Prize to Dr. Dieter Skroblin of the Technische Universität Berlin for his outstanding doctoral thesis. The European Innovation Award Synchrotron Radiation went to Dr. Manfred Faubel from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Dr. Bernd Winter from the Fritz Haber Institute in Berlin. The award ceremony took place at this year's HZB user meeting.
  • Modernisation of BESSY II+ light source
    News
    11.12.2024
    Modernisation of BESSY II+ light source
    The focus of the User Meeting 2024: Helmholtz-Zentrum Berlin (HZB) presents the BESSY II+ upgrade programme.  It enables world-class research at BESSY II to be further expanded and new concepts to be tested with regard to the successor source BESSY III.