Key role of nickel ions in the Simons process discovered

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode. 

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode.  © BAM

Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

The Simons process is of great importance for the production of fluoroorganic compounds and is used in the pharmaceutical, agrochemical, plastics production and electronics industries, among others. The process is named after its inventor, the American chemist Joseph H. Simons, and utilises an electrochemical process to synthesise fluoroorganic compounds. By passing a current through an electrolyte solution containing hydrogen fluoride at an anode and a cathode, fluorine-containing ions are formed which react with other ions or molecules in the solution to form the desired fluorine-containing compounds.

Although this process has been used for over 70 years, the exact mechanism of the Simons process has so far remained a mystery. All that was known was that a black film forms on the nickel anode during the electrolysis process. In order to be able to analyse this film more precisely, the interdisciplinary research team used the synchrotron source BESSY II at the Helmholtz-Zentrum Berlin for the first time. With the help of a specially developed measuring cell, it was possible to carry out in-situ measurements on the anode, which even allowed individual atoms to be observed during electrofluorination. The investigations revealed that centres of highly valent nickel ions are formed in the black layer during the Simons process, which are crucial for the success of electrofluorination.

This discovery makes it possible to specifically improve the Simons process and make it more efficient, which is of great importance for the chemical industry.

Source: Press Release of BAM

red/sz

  • Copy link

You might also be interested in

  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    13.12.2024
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    This year, the Friends of Helmholtz-Zentrum Berlin (Freundeskreis des HZB e. V.) awarded the Ernst Eckhard Koch Prize to Dr. Dieter Skroblin of the Technische Universität Berlin for his outstanding doctoral thesis. The European Innovation Award Synchrotron Radiation went to Dr. Manfred Faubel from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Dr. Bernd Winter from the Fritz Haber Institute in Berlin. The award ceremony took place at this year's HZB user meeting.
  • Modernisation of BESSY II+ light source
    News
    11.12.2024
    Modernisation of BESSY II+ light source
    The focus of the User Meeting 2024: Helmholtz-Zentrum Berlin (HZB) presents the BESSY II+ upgrade programme.  It enables world-class research at BESSY II to be further expanded and new concepts to be tested with regard to the successor source BESSY III.