Fertilisation under the X-ray beam

© Joana C. Carvalho

After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 

Fertilization in mammals begins when a sperm attaches to the egg coat, a filamentous extracellular envelope that sperm must penetrate in order to fuse with the egg. Now an international team of researchers has mapped in detail the structure and function of the protein ZP2, an egg coat filament component that plays a key role in regulating how egg and sperm interact with each other at fertilization.

A fatal condition for the embryo

“It was known that ZP2 is cleaved after the first sperm has entered the egg, and we explain how this event makes the egg coat harder and impermeable to other sperm,” says Luca Jovine, Professor at the Department of Biosciences and Nutrition, Karolinska Institutet, who led the study. “This prevents polyspermy – the fusion of multiple sperm with a single egg – which is a fatal condition for the embryo.”

The changes in the egg coat after fertilization are also crucial to female fertility by ensuring the protection of the developing embryo until this implants in the uterus. The new knowledge may therefore have implications for the development of non-hormonal contraceptives that interfere with the formation of the egg coat. Moreover, the study explains egg coat-associated forms of female infertility. 

“Mutations in the genes encoding egg coat proteins can cause female infertility, and more and more such mutations are being discovered,” explains Luca Jovine. “We hope that our study will contribute to the diagnosis of female infertility and, possibly, the prevention of unwanted pregnancies.”

Looking for the sperm receptor

Importantly, the study also shows that a part of ZP2 that was previously thought to act as a receptor for sperm is not necessary for sperm to attach to the egg. This raises the question of what is the true sperm receptor on the egg coat, which the researchers plan to investigate further.

The researchers combined X-ray crystallography and cryo-EM to study the 3D structure of egg coat proteins. The interaction between sperm and eggs carrying mutations in the ZP2 protein was functionally studied in mice, while the AI program AlphaFold was used to predict the structure of the egg coat in humans.

The study was carried out in collaboration with Osaka and Sophia universities in Japan and the University of Pittsburgh, USA, using data collected at SciLifeLab and the ESRF, DLS and BESSY II synchrotrons.

 

Karolinska Institutet


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.